
Interactive
System Productivity Facility (ISPF)

Edit and Edit Macros
z/OS Version 1 Release 2.0

SC34-4820-01

���

Interactive
System Productivity Facility (ISPF)

Edit and Edit Macros
z/OS Version 1 Release 2.0

SC34-4820-01

���

Note
Before using this document, read the general information under “Notices” on page 419.

Second Edition (October 2001)

This edition applies to ISPF for Version 1 Release 2 of the licensed program z/OS (program number 5694-A01) and
to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, and you have
ISPF-specific comments, address your comments to:
International Business Machines Corporation
Software Reengineering
Department G7IA / Building 503
Research Triangle Park, NC 27709-9990

FAX (United States & Canada): 1+800+227-5088
IBMLink (United States customers only): CIBMORCF@RALVM17
IBM Mail Exchange: USIB2HPD@VNET.IBM.COM
Internet: USIB2HPD@VNET.IBM.COM

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
Title and order number of this book
Page number or topic related to your comment

The ISPF development team maintains a site on the World-Wide Web. The URL for the site is:
http://www.software.ibm.com/ad/ispf

© Copyright International Business Machines Corporation 1984, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xiii

Preface xv
About This Book xv
Who Should Use This Book xv

Summary of Changes xvii
ISPF Product Changes xvii
ISPF DM Component Changes xvii
ISPF PDF Component Changes xix
ISPF SCLM Component Changes xx
ISPF Client/Server Component Changes xx
ISPF User Interface Considerations xx
ISPF Migration Considerations. xxi

ISPF Profiles xxi
Year 2000 Support for ISPF xxi

Elements and Features in z/OS . . . xxiii

The ISPF User Interface xxvii
Some Terms You Should Know xxvii
How to Navigate in ISPF without Using Action
Bars xxviii
How to Navigate in ISPF Using the Action Bar
Interface xxviii

Action Bars xxviii
Action Bar Choices xxx
Point-and-Shoot Text Fields xxxii
Function Keys. xxxii
Selection Fields xxxiii

Command Nesting xxxiv

Part 1. The ISPF Editor 1

Chapter 1. Introducing the ISPF Editor . 3
What is ISPF? 3
What the ISPF Editor Does 4
How to Use the ISPF Editor 4

Beginning an Edit Session 4
Using the ISPF Editor Basic Functions 13
Ending an Edit Session 14

Edit Commands 15
Line Commands 15
Primary Commands 16
Edit Commands and PF Key Processing 16

Edit Macros 17
Editing Data in Controlled Libraries 17
Packing Data 17

Chapter 2. Controlling the Edit
Environment 19
What is an Edit Profile? 19

Using Edit Profile Types 19

Displaying or Defining an Edit Profile 19
Modifying an Edit Profile. 21
Locking an Edit Profile 21

Edit Modes 21
Edit Profile Modes 22
Edit Mode Defaults 23

Flagged Lines 24
Changed Lines 25
Error Lines 25
Special Lines 25

Edit Boundaries 26
Initial Macros. 27
Application-Wide Macros. 28
Statistics for PDS Members 28

Effect of Stats Mode When Beginning an Edit
Session 28
Effect of Stats Mode When Saving Data 28

Version and Modification Level Numbers 29
Sequence Numbers 29

Sequence Number Format and Modification
Level 30
Sequence Number Display 30
Initialization of Number Mode 31

Enhanced and Language-sensitive Edit Coloring . . 31
Language Support 32
The HILITE Command/Dialog 36
Highlighting Status and the Edit Profile 43

Edit Recovery 44

Chapter 3. Managing Data 47
Creating and Replacing Data 47
Copying and Moving Data 48
Shifting Data 49

Column Shift 49
Data Shift 50

Finding, Seeking, Changing, and Excluding Data . . 51
Specifying the Search String 52
Effect of CHANGE Command on
Column-Dependent Data 54
Using the CHANGE Command With EBCDIC
and DBCS Data 55
Controlling the Search 55
Qualifying the Search String 56
Column Limitations 57
Split Screen Limitations 57
Excluded Line Limitations 57
Using the X (Exclude) Line Command with FIND
and CHANGE 57
Repeating the FIND, CHANGE, and EXCLUDE
Commands 58
Examples 58

Excluding Lines 61
Redisplaying Excluded Lines 62
Redisplaying a Range of Lines 62

Labels and Line Ranges 63

© Copyright IBM Corp. 1984, 2001 iii

||
||
||
||

Editor-Assigned Labels 63
Specifying a Range 64
Using Labels and Line Ranges 64

Word Processing. 65
Formatting Paragraphs 65
Splitting Lines 66
Entering Text (Power Typing) 67

Using Tabs 68
Types of Tabs 68
Defining and Controlling Tabs 69
Defining Software Tab Positions 69
Defining Hardware Tab Positions 69
Using Attribute Bytes 70

Undoing Edit Interactions 71
UNDO Processing 72
Understanding Differences in SETUNDO
Processing 72

Chapter 4. Using Edit Models 75
What Is an Edit Model? 75
How Models Are Organized 75
How to Use Edit Models 77
Adding, Finding, Changing, and Deleting Models 79

Adding Models 79
Finding Models 82
Changing Models 83
Deleting Models 83

Part 2. Edit Macros 85

Chapter 5. Using Edit Macros 87
What Are Edit Macros? 87

Performing Repeated Tasks 87
Simplifying Complex Tasks 89
Passing Parameters, and Retrieving and
Returning Information 90

Chapter 6. Creating Edit Macros 93
CLIST and REXX Edit Macros 93

Edit Macro Commands and Assignment
Statements. 94
Command Procedure Statements 94
ISPF and PDF Dialog Service Requests 95
TSO Commands 95

Program Macros 95
Differences between Program Macros, CLISTs,
and REXX EXECs 96
Passing Parameters in a Program Macro 96
Program Macro Examples 97
Writing Program Macros 97
Running Program Macros 100

Using Commands in Edit Macros. 101
Naming Edit Macros 101
Variables 101
Edit Assignment Statements 102
Performing Line Command Functions 106
Parameters 107
Passing Parameters to a Macro 107
Using Edit macros in Batch. 109
Edit Macro Messages 109

Macro Levels 109
Labels in Edit Macros. 110
Referring to Data Lines 112
Referring to Column Positions 112
Defining Macros 113
Using the PROCESS Command and Operand 114
Recovery Macros 115

Return Codes from User-Written Edit Macros. . . 116
Return Codes from PDF Edit Macro Commands 117
Selecting Control for Errors 117

Chapter 7. Testing Edit Macros 119
Handling Errors 119

Edit Command Errors 119
Dialog Service Errors 119

Using CLIST WRITE Statements and REXX SAY
Statements 120
Using CLIST CONTROL and REXX TRACE
Statements 121
Experimenting with Macro Commands 122
Debugging Edit Macros with ISREMSPY 123

Chapter 8. Sample Edit Macros. . . . 125
TEXT Macro. 125
PFCAN Macro 127
BOX Macro 128
IMBED Macro 130
ALLMBRS Macro 133
FINDCHGS Macro 136
MASKDATA Macro 139

Part 3. Command Reference. . . . 143

Chapter 9. Edit Line Commands . . . 151
Rules for Entering Line Commands 151
Edit Line Command Notation Conventions . . . 152
Line Command Summary 152
(—Column Shift Left 154

Syntax. 154
Description 154
Example 154

)—Column Shift Right 155
Syntax. 156
Description 156
Example 156

<—Data Shift Left 157
Syntax. 158
Description 158
Example 158

>—Data Shift Right 160
Syntax. 160
Description 160
Example 160

A—Specify an “After” Destination 161
Syntax. 162
Description 162
Example 162

B—Specify a “Before” Destination 164
Syntax. 164
Description 164

iv z/OS V1R2.0 ISPF Edit and Edit Macros

||

Example 164
BOUNDS—Define Boundary Columns 166

Syntax. 166
Description 166
Example 167

C—Copy Lines 168
Syntax. 168
Description 168
Example 168

COLS—Identify Columns 170
Syntax. 170
Description 170
Example 170

D—Delete Lines 171
Syntax. 171
Description 171
Example 172

F—Show the First Line 173
Syntax. 173
Description 173
Example 173

I—Insert Lines 174
Syntax. 174
Description 174
Example 175

L—Show the Last Line(s) 176
Syntax. 176
Description 176
Example 176

LC—Convert Characters to Lowercase 177
Syntax. 177
Description 177
Example 178

M—Move Lines 179
Syntax. 179
Description 179
Example 180

MASK—Define Masks 181
Syntax. 181
Description 181
Example 182

MD—Make Dataline 183
Syntax. 183
Description 183
Example 184

O—Overlay Lines 185
Syntax. 185
Description 185
Example 186

R—Repeat Lines 187
Syntax. 188
Description 188
Example 188

S—Show Lines 189
Syntax. 189
Description 189
Example 189

TABS—Control Tabs 191
Syntax. 191
Description 191
Examples 191

TE—Text Entry 192
Syntax. 193
Description 193
Example 193

TF—Text Flow 196
Syntax. 196
Description 196
Example 196

TS—Text Split 197
Syntax. 198
Description 198
Examples 198

UC—Convert Characters to Uppercase 199
Syntax. 199
Description 199
Example 200

X—Exclude Lines 201
Syntax. 201
Description 201
Example 202

Chapter 10. Edit Primary Commands 205
Edit Primary Command Notation Conventions . . 205
Edit Primary Command Summary 205
AUTOLIST—Create a Source Listing Automatically 209

Syntax. 210
Description 210
Example 210

AUTONUM—Number Lines Automatically . . . 211
Syntax 211
Description 211
Example 212

AUTOSAVE—Save Data Automatically 213
Syntax. 213
Description 213
Example 214

BOUNDS—Control the Edit Boundaries 214
Syntax. 214
Description 214
Examples 215

BUILTIN—Process a Built-In Command 215
Syntax. 215
Description 215
Example 215

BROWSE—Browse from within an Edit Session 216
Syntax. 216
Description 216
Example 216

CANCEL—Cancel Edit Changes 216
Syntax. 216
Description 217
Example 217

CAPS—Control Automatic Character Conversion 217
Syntax. 217
Description 217
Example 218

CHANGE—Change a Data String 218
Syntax. 218
Description 219
Examples 220

COMPARE—Edit Compare 220

Contents v

Command Syntax 221
Examples 222

COPY—Copy Data 223
Syntax. 223
Description 224
Example 225

CREATE—Create Data 227
Syntax. 227
Description 227
Example 228

CUT—Cut and Save Lines 231
Syntax. 231
Description 231
Example 232

DEFINE—Define a Name 232
Syntax. 232
Description 233
Examples 233

DELETE—Delete Lines 234
Syntax. 234
Description 234
Examples 235

EDIT—Edit from within an Edit Session 235
Syntax. 235
Description 235
Example 236

EDITSET—Display the Editor Settings Dialog . . 237
Syntax. 238
Description 238
The Edit and View Settings Panel 238
Example 240

END—End the Edit Session 241
Syntax. 241
Description 241
Example 241

EXCLUDE—Exclude Lines from the Display . . . 242
Syntax. 242
Description 242
Examples 243

FIND—Find a Data String 243
Syntax. 243
Description 244
Examples 245

FLIP—Reverse Exclude Status of Lines 245
Syntax. 245
Description 245
Example 246

HEX—Display Hexadecimal Characters 247
Syntax. 248
Description 248
Examples 248

HILITE—Enhanced Edit Coloring 250
Syntax. 250
Description 253

IMACRO—Specify an Initial Macro 253
Syntax. 253
Examples 253

LEVEL—Specify the Modification Level Number 254
Syntax. 254
Description 254
Example 254

LOCATE—Locate a Line. 255
Specific Locate Syntax 255
Generic Locate Syntax 256
Examples 256

MODEL—Copy a Model into the Current Data Set 257
Model Name Syntax 257
Class Name Syntax 258
Example 258

MOVE—Move Data 260
Syntax. 260
Description 261
Example 261

NONUMBER—Turn Off Number Mode 264
Syntax. 264
Description 264
Example 264

NOTES—Display Model Notes 264
Syntax. 264
Description 264
Examples 264

NULLS—Control Null Spaces 265
Syntax. 265
Description 265
Examples 265

NUMBER—Generate Sequence Numbers 266
Syntax. 266
Description 267
Examples 267

PACK—Compress Data 267
Syntax. 267
Examples 267

PASTE—Move or Copy Lines from Clipboard . . 267
Syntax. 268
Description 268
Example 268

PRESERVE - Enable Saving of Trailing Blanks . . 269
Syntax. 269
Description 269
Examples 269

PROFILE—Control and Display Your Profile . . . 269
Profile Control Syntax 270
Profile Lock Syntax 270
Profile Reset Syntax 270
Description 271
Example 271

RCHANGE—Repeat a Change 272
Syntax. 272
Description 272

RECOVERY—Control Edit Recovery. 273
Syntax. 273
Description 273

RENUM—Renumber Data Set Lines 274
Syntax. 274
Description 275
Example 275

REPLACE—Replace Data 276
Syntax. 277
Description 277
Example 278

RESET—Reset the Data Display 280
Syntax. 280

vi z/OS V1R2.0 ISPF Edit and Edit Macros

Description 281
Examples 281

RFIND—Repeat Find 282
Syntax. 282

RMACRO—Specify a Recovery Macro 282
Syntax. 282
Description 282
Example 282

SAVE—Save the Current Data 282
Syntax. 283
Description 283
Example 283

SETUNDO—Set the UNDO Mode 283
Syntax. 283
Description 284
Example 285

SORT—Sort Data 285
Syntax. 285
Description 286
Examples 287

STATS—Generate Library Statistics 287
Syntax. 287
Examples 287

SUBMIT—Submit Data for Batch Processing . . . 287
Syntax. 287
Description 288
Examples 288

TABS—Define Tabs 288
Syntax. 288
Example 289

UNDO—Reverse Last Edit Interaction 290
Syntax. 290
Description 290
Example 291

UNNUMBER—Remove Sequence Numbers . . . 292
Syntax. 293
Description 293
Example 293

VERSION—Control the Version Number 294
Syntax. 294
Description 294
Example 294

VIEW—View from within an Edit Session 295
Syntax. 296
Description 296
Example 296

Chapter 11. Edit Macro Commands
and Assignment Statements 297
Edit Macro Command Notation Conventions . . . 297
Edit Macro Command Summary 298
AUTOLIST—Set or Query Autolist Mode 306

Macro Command Syntax 306
Assignment Statement Syntax 306
Return Codes 306
Examples 307

AUTONUM—Set or Query Autonum Mode . . . 307
Macro Command Syntax 307
Assignment Statement Syntax 307
Description 307
Return Codes 308

Examples 308
AUTOSAVE—Set or Query Autosave Mode . . . 308

Macro Command Syntax 308
Assignment Statement Syntax 308
Description 309
Return Codes 309
Examples 309

BLKSIZE—Query the Block Size 309
Assignment Statement Syntax 310
Return Codes 310
Example 310

BOUNDS—Set or Query the Edit Boundaries. . . 310
Macro Command Syntax 310
Assignment Statement Syntax 310
Description 311
Return Codes 311
Examples 311

BROWSE—Browse from within an Edit Session 312
Macro Command Syntax 312
Description 312
Return Codes 312
Examples 312

BUILTIN—Process a Built-In Command 312
Macro Command Syntax 312
Description 313
Return Codes 313
Examples 313

CANCEL—Cancel Edit Changes 313
Macro Command Syntax 313
Description 313
Return Codes 313
Example 314

CAPS—Set or Query Caps Mode 314
Macro Command Syntax 314
Assignment Statement Syntax 314
Description 314
Return Codes 315
Examples 315

CHANGE—Change a Search String 315
Macro Command Syntax 315
Description 316
Return Codes 317
Example 317

CHANGE_COUNTS—Query Change Counts. . . 317
Assignment Statement Syntax 317
Return Codes 317
Examples 318

COMPARE—Edit Compare 318
Macro Command Syntax 318
Return Codes 320
Compare Examples 320

COPY—Copy Data 321
Macro Command Syntax 321
Return Codes 321
Examples 321

CREATE—Create a Data Set or a Data Set Member 322
Macro Command Syntax 322
Description 322
Return Codes 322
Example 322

CURSOR—Set or Query the Cursor Position . . . 322

Contents vii

Assignment Statement Syntax 323
Description 323
Return Codes 324
Examples 324

CUT—Cut and Save Lines 325
Syntax. 325
Description 325
Return Codes 325
Examples 325

DATA_CHANGED—Query the Data Changed
Status 326

Assignment Statement Syntax 326
Description 326
Return Codes 326
Example 326

DATA_WIDTH—Query Data Width 326
Assignment Statement Syntax 326
Description 327
Return Codes 327
Example 327

DATAID—Query Data ID 327
Assignment Statement Syntax 327
Description 328
Return Codes 328
Example 328

DATASET—Query the Current and Original Data
Set Names 328

Assignment Statement Syntax 328
Return Codes 328
Example 329

DEFINE—Define a Name 329
Macro Command Syntax 329
Description 330
Return Codes 330
Examples 330

DELETE—Delete Lines 330
Macro Command Syntax 331
Description 331
Return Codes 331
Examples 331

DISPLAY_COLS—Query Display Columns . . . 331
Assignment Statement Syntax 332
Description 332
Return Codes 332
Example 332

DISPLAY_LINES—Query Display Lines 332
Assignment Statement Syntax 332
Return Codes 333
Example 333

DOWN—Scroll Down 333
Macro Command Syntax 333
Description 333
Return Codes 334
Examples 334

EDIT—Edit from within an Edit Session 334
Macro Command Syntax 334
Description 334
Return Codes 335
Example 335

END—End the Edit Session 335
Macro Command Syntax 335

Description 335
Return Codes 335
Example 336

EXCLUDE—Exclude Lines from the Display . . . 336
Macro Command Syntax 336
Description 337
Return Codes 337
Examples 338

EXCLUDE_COUNTS—Query Exclude Counts . . 338
Assignment Statement Syntax 338
Return Codes 338
Example 338

FIND—Find a Search String 338
Macro Command Syntax 338
Description 339
Return Codes 340
Examples 340

FIND_COUNTS—Query Find Counts 340
Assignment Statement Syntax 341
Return Codes 341
Example 341

FLIP—Reverse Exclude Status of Lines 341
Assignment Statement Syntax 341
Return Codes 341
Examples 341

FLOW_COUNTS—Query Flow Counts 342
Assignment Statement Syntax 342
Return Codes 342
Example 342

HEX—Set or Query Hexadecimal Mode 342
Macro Command Syntax 342
Assignment Statement Syntax 343
Description 343
Return Codes 343
Examples 343

HILITE—Enhanced Edit Coloring 344
Macro Command Syntax 344
Description 346
Return Codes 346

IMACRO—Set or Query an Initial Macro 347
Macro Command Syntax 347
Assignment Statement Syntax 347
Return Codes 347
Examples 347

INSERT—Prepare Display for Data Insertion . . . 348
Macro Command Syntax 348
Description 348
Return Codes 348
Example 348

LABEL—Set or Query a Line Label 348
Assignment Statement Syntax 348
Description 349
Return Codes 349
Example 349

LEFT—Scroll Left 349
Macro Command Syntax 349
Description 350
Return Codes 350
Example 350

LEVEL—Set or Query the Modification Level
Number 350

viii z/OS V1R2.0 ISPF Edit and Edit Macros

Macro Command Syntax 350
Assignment Statement Syntax 351
Return Codes 351
Examples 351

LINE—Set or Query a Line from the Data Set . . 351
Assignment Statement Syntax 351
Description 352
Return Codes 352
Examples 352

LINE_AFTER—Add a Line to the Current Data Set 352
Assignment Statement Syntax 352
Description 353
Return Codes 353
Examples 353

LINE_BEFORE—Add a Line to the Current Data
Set 354

Assignment Statement Syntax 354
Description 355
Return Codes 355
Examples 355

LINE_STATUS—Query Source and Change
Information for a Line in a Data Set 355

Assignment Statement Syntax 356
Return Codes 356
Example 356

LINENUM—Query the Line Number of a Labeled
Line 357

Assignment Statement Syntax 357
Return Codes 357
Description 357
Examples 357

LOCATE—Locate a Line. 357
Specific Locate Syntax 358
Generic Locate Syntax 358
Return Codes 359
Examples 359

LRECL—Query the Logical Record Length . . . 359
Assignment Statement Syntax 359
Description 360
Return Codes 360
Example 360

MACRO—Identify an Edit Macro 360
Macro Command Syntax 360
Description 360
Return Codes 361
Examples 361

MACRO_LEVEL—Query the Macro Nesting Level 361
Assignment Statement Syntax 361
Description 361
Return Codes 361
Example 361

MASKLINE—Set or Query the Mask Line 362
Assignment Statement Syntax 362
Description 362
Return Codes 362
Examples 362

MEMBER—Query the Current Member Name . . 363
Assignment Statement Syntax 363
Return Codes 363
Example 363

MEND—End a Macro in the Batch Environment 363

Macro Command Syntax 363
Return Codes 363

MODEL—Copy a Model into the Current Data Set 363
Macro Command Model Name Syntax 363
Macro Command Class Name Syntax 364
Return Codes 364
Example 365

MOVE— Move a Data Set or a Data Set Member 365
Macro Command Syntax 365
Description 365
Return Codes 365
Examples 366

NONUMBER—Turn Off Number Mode 366
Syntax. 366
Description 366
Return Codes 366
Example 366

NOTES—Set or Query Note Mode 366
Macro Command Syntax 366
Assignment Statement Syntax 367
Return Codes 367
Examples 367

NULLS—Set or Query Nulls Mode 367
Macro Command Syntax 367
Assignment Statement Syntax 367
Description 368
Return Codes 368
Examples 368

NUMBER—Set or Query Number Mode 368
Macro Command Syntax 368
Assignment Statement Syntax 369
Description 370
Return Codes 371
Example 371

PACK—Set or Query Pack Mode 371
Macro Command Syntax 371
Assignment Statement Syntax 371
Return Codes 371
Example 371

PASTE—Move or Copy Lines from Clipboard . . 372
Syntax. 372
Description 372
Return Codes 372
Examples 372

PRESERVE—Enable Saving of Trailing Blanks . . 373
Macro Command Syntax 373
Assignment Statement Syntax 373
Description 373
Return Codes 373
Examples 373

PROCESS—Process Line Commands 374
Macro Command Syntax 374
Description 374
Return Codes 374
Examples 375

PROFILE—Set or Query the Current Profile . . . 375
Macro Command Profile Control Syntax . . . 375
Macro Command Profile Lock Syntax 376
Macro Command Profile Reset Syntax 376
Assignment Statement Syntax 376
Description 377

Contents ix

Return Codes 377
Example 377

RANGE_CMD—Query a Command That You
Entered 377

Assignment Statement Syntax 377
Description 377
Return Codes 377
Example 377

RCHANGE—Repeat a Change 378
Macro Command Syntax 378
Description 378
Return Codes 378
Example 378

RECFM—Query the Record Format 378
Assignment Statement Syntax 378
Return Codes 379
Example 379

RECOVERY—Set or Query Recovery Mode . . . 379
Macro Command Syntax 379
Assignment Statement Syntax 380
Return Codes 380
Examples 380

RENUM—Renumber Data Set Lines 380
Macro Command Syntax 381
Return Codes 381
Examples 381

REPLACE—Replace a Data Set or Data Set
Member 382

Macro Command Syntax 382
Return Codes 382
Example 382

RESET—Reset the Data Display 382
Macro Command Syntax 383
Description 383
Return Codes 383
Examples 384

RFIND—Repeat Find 384
Macro Command Syntax 384
Return Codes 384
Example 384

RIGHT—Scroll Right 385
Macro Command Syntax 385
Description 385
Return Codes 385
Example 385

RMACRO—Set or Query the Recovery Macro . . 385
Macro Command Syntax 386
Assignment Statement Syntax 386
Return Codes 386
Example 386

SAVE—Save the Current Data 386
Macro Command Syntax 386
Description 386
Return Codes 387
Example 387

SAVE_LENGTH—Set or Query Length for Variable
Length Data 387

Assignment Statement Syntax 387
Description 387
Return Codes 388
Examples 388

SCAN—Set Command Scan Mode 388
Macro Command Syntax 388
Assignment Statement Syntax 388
Return Codes 389
Example 389

SEEK—Seek a Data String, Positioning the Cursor 389
Macro Command Syntax 389
Description 390
Return Codes 391
Examples 391

SEEK_COUNTS—Query Seek Counts 391
Assignment Statement Syntax 391
Return Codes 391
Example 391

SESSION—Query Session Type 391
Assignment Statement Syntax 392
Return Codes 392

SETUNDO—Set UNDO Mode. 392
Macro Command Syntax 392
Assignment Statement Syntax 392
Description 393
Return Codes 393
Examples 393

SHIFT (—Shift Columns Left 393
Macro Command Syntax 393
Description 394
Return Codes 394
Examples 394

SHIFT)—Shift Columns Right. 394
Macro Command Syntax 394
Description 394
Return Codes 394
Examples 394

SHIFT <—Shift Data Left 395
Macro Command Syntax 395
Description 395
Return Codes 395
Examples 395

SHIFT >—Shift Data Right 395
Macro Command Syntax 395
Description 396
Return Codes 396
Examples 396

SORT—Sort Data 396
Macro Command Syntax 396
Description 397
Return Codes 398
Examples 398

STATS—Set or Query Stats Mode. 398
Macro Command Syntax 398
Assignment Statement Syntax 398
Return Codes 398
Examples 398

SUBMIT—Submit Data for Batch Processing . . . 399
Macro Command Syntax 399
Description 399
Return Codes 399
Examples 399

TABS—Set or Query Tabs Mode 399
Macro Command Syntax 400
Assignment Statement Syntax 401

x z/OS V1R2.0 ISPF Edit and Edit Macros

Return Codes 401
Examples 401

TABSLINE—Set or Query Tabs Line 401
Assignment Statement Syntax 401
Return Codes 402
Examples 402

TENTER—Set Up Panel for Text Entry 402
Macro Command Syntax 403
Description 403
Return Codes 404
Example 404

TFLOW—Text Flow a Paragraph 404
Macro Command Syntax 404
Return Codes 404
Example 404

TSPLIT—Text Split a Line 404
Macro Command Syntax 405
Description 405
Return Codes 405
Example 405

UNNUMBER—Remove Sequence Numbers . . . 405
Macro Command Syntax 405
Description 405
Return Codes 405
Example 406

UP—Scroll Up 406
Macro Command Syntax 406
Description 406
Return Codes 406
Examples 407

USER_STATE—Save or Restore User State 407
Assignment Statement Syntax 407
Description 407
Return Codes 407
Examples 408

VERSION—Set or Query Version Number 408
Macro Command Syntax 408
Assignment Statement Syntax 408

Return Codes 408
Examples 408

VIEW—View from within an Edit Session 409
Macro Command Syntax 409
Description 409
Return Codes 409
Examples 409

VOLUME—Query Volume Information. 409
Assignment Statement Syntax 409
Return Codes 409
Examples 410

XSTATUS—Set or Query Exclude Status of a Line 410
Assignment Statement Syntax 410
Description 410
Return Codes 410
Examples 411

Part 4. Appendixes 413

Appendix A. Abbreviations for
Commands and Other Values 415
Edit Line Commands 415
Edit Primary Commands 415
Parameters 415
Keywords/Operands 416
Scroll Amounts 416

Appendix B. Edit-Related Sample
Macros 417
Sample Macros 417

Notices 419
Programming Interface Information 420
Trademarks 420

Index 423

Contents xi

xii z/OS V1R2.0 ISPF Edit and Edit Macros

Figures

1. Panel with an Action Bar Pull-Down Menu xxix
2. Pop-Up Selected from an Action Bar

Pull-Down xxx
3. Panel with an Action Bar and

Point-and-Shoot Fields xxx
4. An Unavailable Choice on a Pull-Down xxxi
5. Edit Entry Panel (ISREDM01) 5
6. Creating a New Data Set (ISREDDE2) 10
7. Example Primary Edit Panel (ISREDDE2) 10
8. Edit Profile Display (ISREDDE2) 20
9. HILITE Initial Screen (ISREP1) 38

10. Set Overtype Color panel (ISREP2) 40
11. Set Find String Color panel (ISREP3) 40
12. Set Cursor Phrase Color panel (ISREP4) 41
13. HILITE Specific Language Screens (ISREPC) 42
14. HILITE Language Keyword List (ISREPK) 43
15. Edit Profile Lines with HILITE 43
16. Edit Recovery Panel (ISREDM02) 44
17. Confirm Replace Panel (ISRERPL2) 48
18. Before FIND Command (ISREDDE2) 59
19. After FIND Command 59
20. Before CHANGE Command 60
21. After CHANGE Command 60
22. Before EXCLUDE Command 61
23. After EXCLUDE Command 61
24. Model Classes Panel (ISREMCLS) 76
25. CLIST Models Panel (ISREMCMD). 77
26. DISPLAY Service Model 78
27. Sample Block Letter Model 79
28. Panel Models Panel (ISREMPNL) 80
29. Changed Panel Models Panel (ISREMPNL) 80
30. Changed)PROC Section of Panel Models

Panel (ISREMPNL) 81
31. Source Code for Block Letter Model Selection

Panel. 82
32. DASH Macro 88
33. DASH Macro - Before Running 88
34. DASH Macro - After Running 89
35. TESTDATA Macro 89
36. TESTDATA Macro - Before Running 90
37. TESTDATA Macro - After Running. 90
38. COUNTSTR Macro 91
39. COUNTSTR Macro - Before Running 91
40. COUNTSTR Macro - After Running 92
41. SEPLINE REXX Macro 98
42. SEPLINE PL/I Macro 99
43. SEPLINE COBOL Macro 100
44. TESTDATA Macro with CLIST WRITE

Statements 120
45. Results of TESTDATA Macro with CLIST

WRITE Statements 121
46. TRYIT Macro 122
47. TRYIT Macro - Before Running 123
48. TRYIT Macro - After Running 123
49. TEXT Macro 125
50. TEXT Macro - Before Running 126

51. TEXT Macro - After Running 127
52. PFCAN Macro 127
53. BOX Macro 128
54. BOX Macro - Before Running 130
55. BOX Macro - After Running 130
56. IMBED Macro 131
57. LIST with Imbed Statements 133
58. IMBED Macro - After Running. 133
59. ALLMBRS Macro 134
60. FINDCHGS Macro 136
61. FINDCHGS Macro - Before Running 138
62. FINDCHGS Macro - After Running 139
63. MASKDATA Macro 140
64. MASKDATA Macro - Before Running 141
65. MASKDATA Macro - After Running 142
66. Before the ((Column Shift Left) Line

Command 155
67. After the ((Column Shift Left) Line

Command 155
68. Before the) (Column Shift Right) Line

Command 157
69. After the) (Column Shift Right) Line

Command 157
70. Before the < (Data Shift Left) Line Command 159
71. After the < (Data Shift Left) Line Command 159
72. Before the > (Data Shift Right) Line

Command 161
73. After the > (Data Shift Right) Line Command 161
74. Before the A (After) Line Command 163
75. After the A (After) Line Command 163
76. Before the B (Before) Line Command 165
77. After the B (Before) Line Command 165
78. Before the BOUNDS Line Command 167
79. After the BOUNDS Line Command 167
80. Before the C (Copy) Line Command 169
81. After the C (Copy) Line Command 169
82. Before the COLS Line Command 170
83. After the COLS Line Command 171
84. Before the D (Delete) Line Command 172
85. After the D (Delete) Line Command 172
86. Before the F (Show First Line) Line Command 173
87. After the F (Show First Line) Line Command 174
88. Before the I (Insert) Line Command 175
89. After the I (Insert) Line Command 175
90. Before the L (Show Last Line) Line Command 176
91. After the L (Show Last Line) Line Command 177
92. Before the LC (Lowercase) Line Command 178
93. After the LC (Lowercase) Line Command 179
94. Before the M (Move) Line Command 180
95. After the M (MOVE) Line Command 181
96. Before the MASK Line Command. 182
97. After the MASK Line Command 183
98. Before the MD (Make Dataline) Line

Command 184
99. After the MD (Make Dataline) Line

Command 185

© Copyright IBM Corp. 1984, 2001 xiii

100. Before the O (Overlay) Line Command 187
101. After the O (Overlay) Line Command 187
102. Before the R (repeat) Line Command 188
103. After the R (Repeat) Line Command 189
104. Before the S (Show) Line Command 190
105. After the S (Show) Line Command 190
106. TAB Line Command Example 192
107. Before the TE (Text Entry) Line Command 194
108. After the TE (Text Entry) Line Command 194
109. Sample Text During Text Entry Mode. 195
110. Sample Text After Text Entry Mode. 195
111. Before the TF (Text Flow) Line Command 197
112. After the TF (Text Flow) Line Command 197
113. Before TS (Text Split) Line Command 198
114. After TS (Text Split) Line Command 199
115. Before the UC (Uppercase) Line Command 200
116. After the UC (Uppercase) Line Command 201
117. Before the X (Exclude) Line Command 202
118. After the X (Exclude) Line Command 203
119. Edit Compare Settings Panel 223
120. Member Before Data is Copied. 225
121. Edit Copy Panel (ISRECPY1) 226
122. Data Set to be Copied. 226
123. Member After Data Has Been Copied 227
124. Member Before New Member Is Created 229
125. Edit Create Panel (ISRECRA1) 229
126. Member After New Member Has Been

Created 230
127. New Member Created 230
128. EDIT Primary Command Example 236
129. Edit Command Entry Panel (ISREDM03) 237
130. Nested Member Editing Example 237
131. Edit and View Settings Panel (ISREDSET) 238
132. EDITSET Primary Command Example 240

133. Edit and View Settings Panel (ISREDSET) 241
134. Example of Data Set 246
135. Example of Data Set with Excluded Lines 247
136. Example of Data Set using FLIP on Excluded

Lines 247
137. Member With Hexadecimal Mode Off 249
138. Hexadecimal Display, Vertical Representation 249
139. Hexadecimal Display, Data Representation 250
140. Member With Modification Level of 03 254
141. Member With Modification Level Reset to 00 255
142. Before Model Command 259
143. REXX Models Panel (ISREMRXC) 259
144. REXX Model of VGET Service 260
145. Member Before Data is Moved. 262
146. Edit Move Panel (ISREMOV1) 262
147. Data Set to be Moved 263
148. Member After Data Has Been Moved 263
149. Edit Profile Display 272
150. Member Before Lines Are Renumbered 276
151. Member After Lines Are Renumbered 276
152. Member Before Other Member Is Replaced 278
153. Edit - Replace Panel (ISRERPL1) 279
154. Member After the Other Member Has Been

Replaced 279
155. Other Member Replaced 280
156. SETUNDO STORAGE and RECOVERY OFF 285
157. Member Before Lines Are Deleted 291
158. Member After Lines Are Deleted 292
159. Member After Lines Have Been Restored 292
160. Member Before Lines Are Unnumbered 293
161. Member After Lines Are Unnumbered 294
162. Member Before Version Number is Changed 295
163. Member After Version Number is Changed 295

xiv z/OS V1R2.0 ISPF Edit and Edit Macros

Preface

This book describes the ISPF editor and provides conceptual, usage, and reference
information for the ISPF edit line, primary, and macro commands.

About This Book
This book contains three parts:
v Part 1 introduces and describes how to use the ISPF editor.
v Part 2 describes how to use, write and test edit macros. It also provides and

discusses sample CLIST, REXX, and program edit macros.
v Part 3 is a reference for the edit line, primary, and macro commands available

for ISPF.

Who Should Use This Book
This book is for application and system programmers who develop programs, and
who use the ISPF editor and edit macro instructions. Users who write edit macros
should be familiar with coding CLISTs, REXX EXECs, or programs in the MVS
environment.

© Copyright IBM Corp. 1984, 2001 xv

xvi z/OS V1R2.0 ISPF Edit and Edit Macros

Summary of Changes

z/OS V1R2.0 ISPF contains the following changes and enhancements:
v ISPF Product and Library Changes
v ISPF Dialog Manager Component Changes (including DTL changes)
v ISPF PDF Component Changes
v ISPF SCLM Component Changes
v ISPF Client/Server Component Changes

ISPF Product Changes
Changes to the ZENVIR variable. Characters 1 through 8 contain the product name
and sequence number in the format ISPF x.y, where x.y indicates:
v <= 4.2 means the version.release of ISPF
v = 4.3 means ISPF for OS/390 release 2
v = 4.4 means ISPF 4.2.1 and ISPF for OS/390 release 3
v = 4.5 means ISPF for OS/390 Version 2 Release 5.0
v = 4.8 means ISPF for OS/390 Version 2 Release 8.0
v = 5.0 means ISPF for OS/390 Version 2 Release 10.0
v OR
v = 5.0 means ISPF for z/OS Version 1 Release 1.0
v = 5.2 means ISPF for z/OS Version 1 Release 2.0

The ZENVIR variable is used by IBM personnel for internal purposes. The x.y
numbers DO NOT directly correlate to an ISPF release number in all cases. For
example, as shown above, a ZENVIR value of 4.3 DOES NOT mean ISPF Version 4
Release 3. NO stand-alone version of ISPF exists above ISPF Version 4 Release 2
Modification 1.

The ZOS390RL variable contains the ISPF release on your system.

The ZISPFOS system variable contains the level of ISPF code that is running as
part of the operating system release on your system. This might or might not
match ZOS390RL. For this release, the variable contains ISPF for z/OS 01.02.00.

New system variables:

ZDAYOFWK
The day of the week.

The ISRDDN utility is now documented in the ISPF User’s Guide.

ISPF DM Component Changes
The DM component of ISPF includes the following new functions and
enhancements:
v Add support for ″VER(&variable,IPADDR4)″.
v Add the NOSETMSG parameter to the CONTROL Service.
v Add the LFORMAT parameter to the VDEFINE Service to allow defining like

format variables in a list.
v Change tutorial processing to eliminate the ″End of data″ message on scrollable

area panels that display the entire scrollable area on the screen (no More: + - is
displayed). This change eliminates the extra enter the user had to execute before
continuing to the next panel.

© Copyright IBM Corp. 1984, 2001 xvii

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|

|
|

|

|

|
|
|
|
|
|
|
|
|
|

v Issue a TSO line message when a help panel is not found and continue the
dialog. Previously ISPF issued a severe error message when a help panel could
not be found.

v Display a message indicating a message is not found when running in Dialog
Test and allow the dialog to continue.

v Add support for extended SBCS and DBCS CCSIDs:
– 1159 Traditional Chinese
– 1364 Korean
– 1371 Traditional Chinese
– 1388 Simplified Chinese
– 1390 Japanese
– 1399 Japanese

v Add new Z variables to support 5 character code pages and character sets,
ZTERMCP5 and ZTERMCS5 respectively.

v Add new variable ZDAYOFWK to show the day of the week.
v Enhance the Reflist function of TEST option 7.6 to allow better list management.
v Enhance Locate and Find for Dialog Test Variables (option 7.3).
v A new exec called ISPCMDTB to convert ISPF command tables to DTL.
v A new Configuration Table variable to allow SCROLL defaults.
v A new Configuration Table variable to allow STATUS AREA defaults.

ISPDTLC enhancements:

ISPDTLC changes include new invocation options, new tags, and new tag.
attributes as ISPF extensions to the Dialog Tag Language

General improvements:
v New invocation options:

– no new invocation options in this release
v New tags:

– DLDIV, DTDIV, DTHDIV for dividers within the DL tag
– PLDIV, PTDIV for dividers within the PARML tag

v Replication added to predefined entities. For example, >SYM(5); will create
the string ’>>>>>’ in the substituted text.

v National language text strings are now accessible as entities. For example,
&command; will create the string ’Command’ or its translated equivalent in the
substituted text.

v New ENTITY keywords COPIES, X2C and ATTR.
v New macro tag default initialization processing syntax.

<?dummy ?var=value>

v New Predefined ENTITY keywords cmdpmt (&cmdpmt;) and rptr (&rptr;).

New or changed tag attributes:

Tag name Attribute update

CHECKI Add support for ″VER(&variable, IPADDR4)″

COMPOPT Add ADD.

xviii z/OS V1R2.0 ISPF Edit and Edit Macros

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|

|

|

|
|

|
|
|

|

|

|

|

|

|||

||

||

Tag name Attribute update

DL Add FORMAT.

Support multiple DT tags for each DD tag.

Change TSIZE to support multiple values.

Each TSIZE value implies a DT tag.

DT Add FORMAT, NOSKIP.

DTAFLD Add AUTOTYPE, AUTOVOL, AUTODMEM.

HELP Add ZUP, ZCONT.

Hn Add COMPACT.

HP Add INTENSE.

NOTE Add NOSKIP.

NT Add NOSKIP.

PANEL Add ZUP, ZCONT, AUTONRET, AUTOTCMD.

PARML Add FORMAT.

Support multiple PT tags for each PD tag.

Change TSIZE to support multiple values.

Each TSIZE value implies a PT tag.

PT Add FORMAT, SKIP.

SELFLD Add SELCHECK.

Support INIT=init-value for single-choice selection fields.

ISPF PDF Component Changes
The ISPF PDF component contains the following new functions and enhancements:
v A MEMBER command has been added to data set list (option 3.4) to allow the

partitioned data sets in the list to be searched for a specific member.
v When the EDIT service is specified with an initial macro, parameters can now be

specified for the initial macro.
v A FIND command has been added to member list to allow a string to be

searched for in any of the displayed statistics.
v A SRCHFOR command has been added to data set list to allow SuperC to be

invoked to search the listed data sets for strings.
v Move/Copy will now dynamically calculate the sized for the IEBCOPY SYSUT3

and SYSUT4 data sets.
v A QUERYENQ service has been added to retrieve ENQ information about a data

set in use.
v LMF has been removed from the ISPF product.
v A new SuperC option FINDALL has been added to specify that all strings must

be found to issue a ″strings found″ return code.
v LMPRINT will now allow the INDEX parameter to be specified for a record

format U data set.
v Foreground and Batch now support the z/OS C/C++ compiler.

Summary of Changes xix

||

||

|

|

|

||

||

||

||

||

||

||

||

||

|

|

|

||

||

||
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|

v A new AUTOTYPE command can be set to a PFKEY to retrieve a data set name
or pattern entered on a panel based on data sets that start with that partial
name.

v Data sets with an LRECL less than 10 bytes can be edited or viewed.
v The Edit CUT and PASTE command defaults have been added to the ISPF

Configuration Table.
v The Edit CUT and PASTE default behaviors have been modified to use CUT

REPLACE and PASTE KEEP.
v The BARRIER keyword has been added to the SELECT for Edit macros.
v A program called ISREMSPY that can be invoked from an Edit macro to display

the current Edit data.
v The Edit macro commands CURSOR, LINENUM and DISPLAY_LINES can

retrieve line numbers greater than 999999.

ISPF SCLM Component Changes
The ISPF SCLM component contains the following new functions and
enhancements:
v Several enhancements to the Library Utility:

– A member action to initiate Promotion on a member.
– REFRESH command to update the member list contents.
– HIER ON|OFF command to switch between full hierarchy view and single

group view.
– Edit action can create a new member when entered on the command line.
– Ability to select deletion of accounting data or build map only.

v New FLMLRBLD macro to select automated rebuild for members with a
specified language on promotion to listed groups.

v Improved edit models for SCLM services.
v VOL keyword on the FLMCPYLB and FLMSYSLB macros allowing reference to

uncatalogued data sets.
v VIO keyword on the FLMALLOC macro to override the SCLM-calculated

default unit of DASD or VIO for temporary data sets.
v Supplied parsers and translators are all loaded RMODE(31).

ISPF Client/Server Component Changes
The ISPF Client/Server Component enables a panel to be displayed unchanged
(except for panels with graphic areas) at a workstation using the native display
function of the operating system of the workstation. ISPF manuals call this
″running in GUI mode.″

There are no changes to the ISPF Client/Server for this release.

ISPF User Interface Considerations
Many changes have been made to the ISPF Version 4 user interface to conform to
CUA guidelines. If you prefer to change the interface to look and act more like the
Version 3 interface, you can do the following:
v Use the CUAATR command to change the screen colors
v Use the ISPF Settings panel to specify that the TAB or HOME keys position the

cursor to the command line rather than to the first action bar item

xx z/OS V1R2.0 ISPF Edit and Edit Macros

|
|
|

|

|
|

|
|

|

|
|

|
|

|
|

|
|

|

|

|

|
|

|

|

|
|

|

|
|

|
|

|

|

v Set the command line to the top of the screen by deselecting Command line at
bottom on the ISPF Settings panel

v Set the primary keys to F13–24 by selecting 2 for Primary range on the Tailor
Function Key Definition Display panel

v Use the KEYLIST OFF command to turn keylists off
v Use the PSCOLOR command to change point-and-shoot fields to blue.
v Change the DFLTCOLR field in the PDF configuration table ISRCONFG to

disable action bars and or edit highlighting

ISPF Migration Considerations
When migrating to OS/390 V2R8.0 or higher for the first time, you must convert
your ISPF customization to the new format. Refer to the section entitled The ISPF
Configuration Table in the ISPF Planning and Customizing manual.

When migrating from one version of ISPF to another, you must be sure to
reassemble and re-link the SCLM project definition.

Note: If you are migrating to z/OS V1R2.0 from OS/390 V2R10.0, there are no
migration actions necessary. If you are migrating to z/OS V1R2.0 from a
prior release of OS/390, follow the migration actions for OS/390 V2R10.0.

ISPF Profiles
Major changes were made to the ISPF profiles for ISPF Version 4.2 and OS/390
Version 1 Release 1.0 ISPF. The profiles for ISPF Version 3 and the profiles for
OS/390 ISPF are not compatible. If you are moving back and forth between an
ISPF Version 3 system and OS/390 V1R1.0 or higher system, you must run with
separate profiles. Profiles for OS/390 V1R1.0 and higher are compatible with each
other.

Year 2000 Support for ISPF
ISPF is fully capable of using dates for the year 2000 and beyond. All of your
existing applications should continue to run (some may need minor changes, as
explained below) when the year 2000 comes. The base support for the year 2000
was added to OS/390 Version 1 Release 2.0, but the same level of support is
available for ISPF Version 3.5, ISPF Version 4, and OS/390 Version 1 Release 1.0 as
well. To get support for the earlier versions, be sure that your system has the
correct APARs installed. All ISPF APARs that add or correct function relating to the
year 2000 contain the YR2000 identifier in the APAR text. You should search for
these APARs to ensure you have all the function available.

What function is included?
v ISPF Dialog variable ZSTDYEAR now correctly shows the year for dates past

1999. Earlier versions always showed the first 2 characters of the year as 19.
v A new ISPF dialog variable (ZJ4DATE) is available for Julian dates with a 4–digit

year.
v An ISPF Configuration Table field enables PDF to interpret 2 character year

dates as either a 19xx or 20xx date. The default value is 65. Any 2-character year
date whose year is less than or equal to this value is considered a 20xx date,
anything greater than this value is considered 19xx. To see what value has been
set by the ISPF Configuration Table, use the new ZSWIND variable.

v New parameters in the LMMSTATS service (CREATED4 and MODDATE4) for
specifying 4-character year dates. All existing parameters still exist and you can

Summary of Changes xxi

continue to use them. If both the 2-character year date parameters (CREATED
and MODDATE) and the 4-character year date parameters (CREATED4 and
MODDATE4) are specified, the 2-character versions are used.

v Dialog variables ZLC4DATE and ZLM4DATE have been added.
– You can set them before making an LMMREP or LMMADD call. Do this to

specify a 4-character created or last modified date to set in the ISPF statistics.
– They are set by LMMFIND, LMMLIST and LMMDISP to the current value of

the created and last modified dates in the ISPF statistics.

What might need to change? Some minor changes to your existing ISPF dialogs
might be necessary, especially in ISPF dialogs that use the Library Access Services
to manipulate ISPF member statistics.
v For those services that accept both 4-character year dates and 2-character year

dates, you can specify one or the other. If you specify both, the 2-character year
date is used to avoid affecting existing dialogs. When the 2-character year date is
used, the configuration table field mentioned above is used to determine
whether the date should be interpreted as 19xx or 20xx.

v ISPF will not necessarily show 4-character dates in all circumstances but it will
process them correctly. For example, a member list might only display
2-character year dates but will sort those dates in the proper order.

v SCLM stores dates past the year 1999 in a new internal format. If an accounting
file contains dates in this new format, it cannot be processed by a system
without year 2000 support. Accounting files without dates past 1999 can be
processed with or without the year 2000 support.

v LMF has been removed from the ISPF product. For information about how to
convert from LMF to SCLM refer to the ISPF Planning and Customizing
manual.

xxii z/OS V1R2.0 ISPF Edit and Edit Macros

|
|
|

Elements and Features in z/OS

You can use the following table to see the relationship of a product you are
familiar with and how it is referred to in z/OS Version 1 Release 2.0. z/OS V1R2.0
is made up of elements and features that contain function at or beyond the release
level of the products listed in the following table. The table gives the name and
level of each product on which a z/OS element or feature is based, identifies the
z/OS name of the element or feature, and indicates whether it is part of the base
or optional. For more compatibility information about z/OS elements see z/OS
Planning for Installation, GC28-1726

Product Name and Level Name in z/OS Base or Optional

BookManager BUILD/MVS V1R3 BookManager BUILD optional

BookManager READ/MVS V1R3 BookManager READ base

MVS/Bulk Data Transfer V2 Bulk Data Transfer (BDT) base

MVS/Bulk Data Transfer File-to-File V2 Bulk Data Transfer (BDT) File-to-File optional

MVS/Bulk Data Transfer SNA NJE V2 Bulk Data Transfer (BDT) SNA NJE optional

IBM OS/390 C/C++ V1R2 C/C++ optional

DFSMSdfp V1R3 DFSMSdfp base

DFSMSdss DFSMSdss optional

DFSMShsm DFSMShsm optional

DFSMSrmm DFSMSrmm optional

DFSMS/MVS Network File System V1R3 DFSMS/MVS Network File System base

DFSORT R13 DFSORT optional

EREP MVS V3R5 EREP base

FFST/MVS V1R2 FFST/MVS base

GDDM/MVS V3R2
v GDDM-OS/2 LINK
v GDDM-PCLK

GDDM base

GDDM-PGF V2R1.3 GDDM-PGF optional

GDDM-REXX/MVS V3R2 GDDM-REXX optional

IBM High Level Assembler for MVS & VM
& VSE V1R2

High Level Assembler base

IBM High Level Assembler Toolkit High Level Assembler Toolkit optional

ICKDSF R16 ICKDSF base

ISPF ISPF base

Language Environment for MVS & VM V1R5 Language Environment base

Language Environment V1R5 Data
Decryption

Language Environment Data Decryption optional

© Copyright IBM Corp. 1984, 2001 xxiii

|
|
|
|
|
|
|
|

Product Name and Level Name in z/OS Base or Optional

MVS/ESA SP V5R2.2

BCP

ESCON Director Support

Hardware Configuration Definition
(HCD)

JES2 V5R2.0

JES3 V5R2.1

LANRES/MVS V1R3.1

IBM LAN Server for MVS V1R1

MICR/OCR Support

OS/390 UNIX System Services

OS/390 UNIX Application Services

OS/390 UNIX DCE Base Services (OSF
DCE level 1.1)

OS/390 UNIX DCE Distributed File
Services (DFS) (OSF DCE level 1.1)

OS/390 UNIX DCE User Data Privacy

SOMobjects Application Development
Environment (ADE) V1R1

SOMobjects Runtime Library (RTL)

SOMobjects service classes

BCP or MVS

ESCON Director Support

Hardware Configuration Definition
(HCD)

JES2

JES3

LANRES

LAN Server

MICR/OCR Support

OS/390 UNIX System Services

OS/390 UNIX Application Services

OS/390 UNIX DCE Base Services

OS/390 UNIX DCE Distributed File
Services (DFS)

OS/390 UNIX DCE User Data Privacy

SOMobjects Application Development
Environment (ADE)

SOMobjects Runtime Library (RTL)

SOMobjects service classes

base

base

base

base

optional

base

base

base

base

base

base

base

optional

optional

base

base

Open Systems Adapter Support Facility
(OSA/SF) R1

Open Systems Adapter Support Facility
(OSA/SF)

base

MVS/ESA RMF V5R2 RMF optional

OS/390 Security Server Resource Access Control Facility (RACF)
v DCE Security Server
v OS/390 Firewall Technologies
v Lightweight Directory Access Protocol

(LDAP) Client and Server
v Open Cryptographic Enhanced Plug-ins

(OCEP)

optional

SDSF V1R6 SDSF optional

SMP/E SMP/E base

Softcopy Print base

SystemView for MVS Base SystemView for MVS Base base

IBM TCP/IP V3R1

v TCP/IP CICS Sockets

v TCP/IP IMS Sockets

v TCP/IP Kerberos

v TCP/IP Network Print Facility (NPF)

v TCP/IP OS/390 Communications Service
IP Applications

v TCP/IP OS/2 Offload

TCP/IP

v TCP/IP CICS Sockets

v TCP/IP IMS Sockets

v TCP/IP Kerberos

v TCP/IP Network Print Facility (NPF)

v TCP/IP OS/390 Communications Service
IP Applications

v TCP/IP OS/2 Offload

base

v optional

v optional

v optional

v optional

v optional

v optional

TIOC R1 TIOC base

Time Sharing Option Extensions (TSO/E)
V2R5

TSO/E base

xxiv z/OS V1R2.0 ISPF Edit and Edit Macros

Product Name and Level Name in z/OS Base or Optional

VisualLift for MVS V1R1.1 v VisualLift Run-Time Environment (RTE)
v VisualLift Application Development

Environment (ADE)

v base
v optional

VTAM V4R3 with the AnyNet feature VTAM base

3270 PC File Transfer Program V1R1.1 3270 PC File Transfer Program base

Elements and Features in z/OS xxv

xxvi z/OS V1R2.0 ISPF Edit and Edit Macros

The ISPF User Interface

ISPF provides an action bar-driven interface that exploits many of the usability
features of Common User Access (CUA) interfaces. Refer to Object-Oriented Interface
Design: IBM Common User Access Guidelines for additional information.

The panels look different than in Version 3: all screens are in mixed case, and most
have action bars at the top. These action bars give you a new way to move around
in the product as well as access to command nesting. Command nesting allows
you to suspend an activity while you perform a new one rather than having to end
a function to perform another function.

This chapter primarily explains the action bar-driven interface and the use of
ISPF’s graphical user interface (GUI).

Some Terms You Should Know
The following terms are used in this book:

action bar. The area at the top of an ISPF panel that contains choices that give you access to actions available on
that panel. When you select an action bar choice, ISPF displays a pull-down menu.

pull-down menu. A list of numbered choices extending from the selection you made on the action bar. The action
bar selection is highlighted; for example, Utilities in Figure 1 on page xxix appears highlighted on your screen. You
can select an action either by typing in its number and pressing Enter or by selecting the action with your cursor.
ISPF displays the requested panel. If your choice contains an ellipsis (...), ISPF displays a pop-up window. When you
exit this panel or pop-up, ISPF closes the pull-down and returns you to the panel from which you made the initial
action bar selection.

ellipsis. Three dots that follow a pull-down choice. When you select a choice that contains an ellipsis, ISPF displays
a pop-up window.

pop-up window. A bordered temporary window that displays over another panel.

modal pop-up window. A type of window that requires you to interact with the panel in the pop-up before
continuing. This includes cancelling the window or supplying information requested.

modeless pop-up window. A type of window that allows you to interact with the dialog that produced the pop-up
before interacting with the pop-up itself.

point-and-shoot text. Text on a screen that is cursor-sensitive. See “Point-and-Shoot Text Fields” on page xxxii for
more information.

push button. A rectangle with text inside. Push buttons are used in windows for actions that occur immediately
when the push button is selected (available only when you are running in GUI mode).

function key. In previous releases of ISPF, a programmed function (PF) key. This is a change in terminology only.

select. In conjunction with point-and-shoot text fields and action bar choices, this means moving the cursor to a
field and simulating Enter.

mnemonics. Action bar choices can be defined with a underscored letter in the action bar choice text. In host mode
you can access the action bar choice with the ACTIONS command and parameter ’x’, where ’x’ is the underscored
letter in the action bar choice text. In GUI mode you can use a hot key to access a choice on the action bar; that is,
you can press the ALT key in combination with the letter that is underscored in the action bar choice text.

© Copyright IBM Corp. 1984, 2001 xxvii

How to Navigate in ISPF without Using Action Bars
If you use a non-programmable terminal to access z/OS V1R2.0 ISPF and you do
not want to take advantage of the command nesting function, you can make
selections the same way you always have: by typing in a selection number and
pressing Enter.

How to Navigate in ISPF Using the Action Bar Interface
Most ISPF panels have action bars at the top; the choices appear on the screen in
white by default. Many panels also have point-and-shoot text fields, which appear
in turquoise by default. The panel shown in Figure 3 on page xxx has both.

Action Bars
Action bars give you another way to move through ISPF. If the cursor is located
somewhere on the panel, there are several ways to move it to the action bar:
v Use the cursor movement keys to manually place the cursor on an action bar

choice.
v Type ACTIONS on the command line and press Enter to move the cursor to the

first action bar choice.
v Press F10 (Actions) or the Home key to move the cursor to the first action bar

choice.
If mnemonics are defined for action bar choices, you can:
– In 3270 mode, on the command line, type ACTIONS and the mnemonic letter

that corresponds to an underscored letter in the action bar choice text. This
results in the display of the pull-down menu for that action bar choice.

– In 3270 mode, on the command line enter the mnemonic letter that
corresponds to an underscored letter in the action bar choice text, and press
the function key assigned to the ACTIONS command. This results in the
display of the pull-down menu for that action bar choice.

– In GUI mode, you can use a hot key to access a choice on an action bar or on
a pull-down menu; that is, you can press the ALT key in combination with
the mnemonic letter that is underscored in the choice text to activate the text.

Use the tab key to move the cursor among the action bar choices. If you are
running in GUI mode, use the right and left cursor keys.

Notes:

1. ISPF does not provide a mouse emulator program. This book uses select in
conjunction with point-and-shoot text fields and action bar choices to mean
moving the cursor to a field and simulating Enter.

Note: Some users program their mouse emulators as follows:
v Mouse button 1 – to position the cursor to the pointer and simulate

Enter
v Mouse button 2 – to simulate F12 (Cancel).

2. If you want the Home key to position the cursor at the first input field on an
ISPF panel, type SETTINGS on any command line and press Enter to display the
ISPF Settings panel. Deselect the Tab to action bar choices option.

3. If you are running in GUI mode, the Home key takes you to the beginning of
the current field.

The ISPF User Interface

xxviii z/OS V1R2.0 ISPF Edit and Edit Macros

When you select one of the choices on the action bar, ISPF displays a pull-down
menu. Figure 1 shows the pull-down menu displayed when you select Utilities on
the ISPF Primary Option Menu action bar.

To select a choice from the Utilities pull-down menu, type its number in the entry
field (underlined) and press Enter or select the choice. To cancel a pull-down menu
without making a selection, press F12 (Cancel). For example, if you select choice
9, ISPF displays the Command Table Utility pop-up, as shown in Figure 2 on
page xxx.

Note: If you entered a command on the command line prior to selecting an action
bar choice, the command is processed, and the pull-down menu is never
displayed. The CANCEL, END, and RETURN commands are exceptions.
These three commands are not processed and the cursor is repositioned to
the first input field in the panel body. If there is no input field, the cursor is
repositioned under the action bar area. If you are running in GUI mode and
select an action bar choice, any existing command on the command line is
ignored.

�1� The selected action bar choice is highlighted.

Figure 1. Panel with an Action Bar Pull-Down Menu

The ISPF User Interface

The ISPF User Interface xxix

Action Bar Choices
The action bar choices available vary from panel to panel, as do the choices
available from their pull-downs. However, Menu and Utilities are basic action bar
choices, and the choices on their pull-down menus are always the same.

Figure 2. Pop-Up Selected from an Action Bar Pull-Down

�1� Action bar. You can select any of the action bar choices and display a pull-down.

�2� Options. The fields in this column are point-and-shoot text fields.

�3� Dynamic status area. You can specify what you want to be displayed in this area.

Figure 3. Panel with an Action Bar and Point-and-Shoot Fields

The ISPF User Interface

xxx z/OS V1R2.0 ISPF Edit and Edit Macros

Menu Action Bar Choice
The following choices are available from the Menu pull-down:

Settings Displays the ISPF Settings panel

View Displays the View Entry panel

Edit Displays the Edit Entry panel

ISPF Command Shell Displays the ISPF Command Shell panel

Dialog Test... Displays the Dialog Test Primary Option panel

Other IBM Products... Displays the Additional IBM Program
Development Products panel

SCLM Displays the SCLM Main Menu

ISPF Workplace Displays the Workplace entry panel

Status Area... Displays the ISPF Status panel

Exit Exits ISPF.

Note: If a choice displays in blue (the default) with an asterisk as the first digit of
the selection number (if you are running in GUI mode, the choice will be
grayed), the choice is unavailable for one of the following reasons:
v Recursive entry is not permitted here
v The choice is the current state; for example, RefMode is currently set to

Retrieve in Figure 4.

Utilities Action Bar Choice
The following choices are available from the Utilities pull-down:
Library Displays the Library Utility panel
Data Set Displays the Data Set Utility panel
Move/Copy Displays the Move/Copy Utility panel

Figure 4. An Unavailable Choice on a Pull-Down

The ISPF User Interface

The ISPF User Interface xxxi

Data Set List Displays the Data Set List Options panel
Reset Statistics Displays the Reset ISPF Statistics panel
Hardcopy Displays the Hardcopy Utility panel
Download... Displays the panel that enables you to download

workstation clients and other files from the host.
Outlist Displays the Outlist Utility panel
Commands... Displays the Command Table Utility panel
Reserved Reserved for future use by ISPF; an unavailable

choice
Format Displays the Format Specification panel
SuperC Displays the SuperC Utility panel
SuperCE Displays the SuperCE Utility panel
Search-for Displays the Search-For Utility panel.
Search-forE Displays the Search-ForE Utility panel.

Point-and-Shoot Text Fields
Point-and-shoot text fields are cursor-sensitive; if you select a field, the action
described in that field is performed. For example, if you select Option 0, Settings,
in Figure 3 on page xxx, ISPF displays the ISPF Settings panel.

Note: If you have entered a command on the command line, this command is
processed before any point-and-shoot command unless you are running in
GUI mode.

The cursor-sensitive portion of a field often extends past the field name. Until you
are familiar with this new feature of ISPF, you might want to display these fields
in reverse video (use the PSCOLOR command to set Highlight to REVERSE).

Note: You can use the Tab key to position the cursor to point-and-shoot fields by
selecting the Tab to point-and-shoot fields option on the ISPF Settings panel
(Option 0).

Function Keys
ISPF uses CUA-compliant definitions for function keys F1–F12 (except inside the
Edit function). F13–F24 are the same as in ISPF Version 3. By default you see the
CUA definitions because your Primary range field is set to 1 (Lower - 1 to 12).

To use non-CUA-compliant keys, select the Tailor function key display choice
from the Function keys pull-down on the ISPF Settings (option 0) panel action bar.
On the Tailor Function Key Definition Display panel, specify 2 (Upper - 13 to 24)
in the Primary range field.

The following function keys help you navigate in ISPF:

F1 Help. Displays Help information. If you press F1 (and it is set to Help)
after ISPF displays a short message, a long message displays in a pop-up
window.

F2 Split. Divides the screen into two logical screens separated by a horizontal
line or changes the location of the horizontal line.

Note: If you are running in GUI mode, each logical screen displays in a
separate window.

F3 Exit (from a pull-down). Exits the panel underneath a pull-down.

F3 End. Ends the current function.

The ISPF User Interface

xxxii z/OS V1R2.0 ISPF Edit and Edit Macros

F7 Backward. Moves the screen up the scroll amount.

F8 Forward. Moves the screen down the scroll amount.

F9 Swap. Moves the cursor to where it was previously positioned on the
other logical screen of a split-screen pair.

F10 Actions. Moves the cursor to the action bar. If you press F10 a second time,
the cursor moves to the command line.

F12 Cancel. Issues the Cancel command. Use this command to remove a
pull-down menu if you do not want to make a selection. F12 also moves
the cursor from the action bar to the Option ==> field on the ISPF Primary
Option Menu. See ISPF Dialog Developer’s Guide and Reference for
cursor-positioning rules.

F16 Return. Returns you to the ISPF Primary Option Menu or to the display
from which you entered a nested dialog. RETURN is an ISPF system
command.

Selection Fields
z/OS V1R2.0 ISPF uses the following CUA-compliant conventions for selection
fields:

A single period (.)
Member lists that use a single period in the selection field recognize only a
single selection. For example, within the Edit function you see this on your
screen:
│EDIT USER1.PRIVATE.TEST ROW 00001 of 00002 │
│ Name VV MM Created Changed Size Init Mod ID │
│ . MEM1 01.00 94/05/12 94/07/22 40 0 0 USER1 │
│ . MEM2 01.00 94/05/12 94/07/22 30 0 0 KEENE │

You can select only one member to edit.

A single underscore (_)
Selection fields marked by a single underscore prompt you to use a slash
(/) to select the choice. You may use any non-blank character. For example,
the Panel display CUA mode field on the ISPF Settings panel has a single
underscore for the selection field:
Options

Enter "/" to select option
_ Command line at bottom
_ Panel display CUA mode
_ Long message in pop-up

Note: If you are running in GUI mode, this type of selection field displays
as a check box; that is, a square box with associated text that
represents a choice. When you select a choice, a check mark (in
OS/2) or an X (in Windows) appears in the check box to indicate
that the choice is in effect. You can clear the check box by selecting
the choice again.

An underscored field (____)
Member lists or text fields that use underscores in the selection field
recognize multiple selections. For example, from the Display Data Set List
Option panel, you may select multiple members for print, rename, delete,
edit, browse, or view processing.

The ISPF User Interface

The ISPF User Interface xxxiii

Command Nesting
Command nesting allows you to suspend an activity while you perform a new one
rather than having to end a function to perform another function. For example, in
previous versions of ISPF, if you are editing a data set and want to allocate another
data set, you type =3.2 on the command line and press Enter. ISPF ends your edit
session before taking you to the Data Set Utility panel. When you have allocated
the data set and want to return to your edit session, you type =2 and press Enter;
ISPF returns you to the Edit Entry Panel. With z/OS V1R2.0 ISPF, from your edit
session, select the Data set choice from the Utilities pull-down on the Edit panel
action bar. ISPF suspends your edit session and displays the Data Set Utility panel.
When you have allocated the new data set and end the function, z/OS V1R2.0
ISPF returns you directly to your edit session rather than to the Edit Entry Panel.

The ISPF User Interface

xxxiv z/OS V1R2.0 ISPF Edit and Edit Macros

Part 1. The ISPF Editor

Chapter 1. Introducing the ISPF Editor 3
What is ISPF? 3
What the ISPF Editor Does 4
How to Use the ISPF Editor 4

Beginning an Edit Session 4
Edit Entry Panel Action Bar 5
Edit Entry Panel Fields 6
Creating a New Data Set 9
Editing an Existing Data Set 10

Using the ISPF Editor Basic Functions 13
Ending an Edit Session 14

Edit Commands 15
Line Commands 15
Primary Commands 16
Edit Commands and PF Key Processing 16

Edit Macros 17
Editing Data in Controlled Libraries 17
Packing Data 17

Chapter 2. Controlling the Edit Environment . . 19
What is an Edit Profile? 19

Using Edit Profile Types 19
Displaying or Defining an Edit Profile 19
Modifying an Edit Profile. 21
Locking an Edit Profile 21

Edit Modes 21
Edit Profile Modes 22
Edit Mode Defaults 23

Site-wide Edit Profile Initialization. 23
Creating a ZDEFAULT Edit Profile 24

Flagged Lines 24
Changed Lines 25
Error Lines 25
Special Lines 25

Edit Boundaries 26
Initial Macros. 27
Application-Wide Macros. 28
Statistics for PDS Members 28

Effect of Stats Mode When Beginning an Edit
Session 28
Effect of Stats Mode When Saving Data 28

Version and Modification Level Numbers 29
Sequence Numbers 29

Sequence Number Format and Modification
Level 30
Sequence Number Display 30
Initialization of Number Mode 31

Enhanced and Language-sensitive Edit Coloring . . 31
Language Support 32

Automatic Language Selection 32
Language Processing Limitations and
Idiosyncracies 33

The HILITE Command/Dialog 36
HILITE Operands 36
The HILITE Dialog 37

Highlighting Status and the Edit Profile 43

Edit Recovery 44

Chapter 3. Managing Data 47
Creating and Replacing Data 47
Copying and Moving Data 48
Shifting Data 49

Column Shift 49
Column Shifting in Lines that Contain DBCS
Strings 49

Data Shift 50
Finding, Seeking, Changing, and Excluding Data . . 51

Specifying the Search String 52
Simple and Delimited Strings 52
Character Strings 53
Picture Strings (String-1) 53
Picture Strings (String-2) 54

Effect of CHANGE Command on
Column-Dependent Data 54
Using the CHANGE Command With EBCDIC
and DBCS Data 55
Controlling the Search 55

Extent of the Search 55
Starting Point and Direction of the Search . . 55

Qualifying the Search String 56
Column Limitations 57
Split Screen Limitations 57
Excluded Line Limitations 57
Using the X (Exclude) Line Command with FIND
and CHANGE 57
Repeating the FIND, CHANGE, and EXCLUDE
Commands 58
Examples 58

FIND Command Example 58
CHANGE Command Example 59
EXCLUDE Command Example 60

Excluding Lines 61
Redisplaying Excluded Lines 62
Redisplaying a Range of Lines 62

Labels and Line Ranges 63
Editor-Assigned Labels 63
Specifying a Range 64
Using Labels and Line Ranges 64

Word Processing. 65
Formatting Paragraphs 65

Using Text Flow on a DBCS Terminal. . . . 66
Splitting Lines 66

Splitting Lines Within a DBCS String 67
Entering Text (Power Typing) 67

Entering Text on a DBCS Terminal. 68
Using Tabs 68

Types of Tabs 68
Software and Hardware Tabs 68
Logical Tabs 68
Effect of TABS Commands on Tab Types . . 68

Defining and Controlling Tabs 69
Defining Software Tab Positions 69

© Copyright IBM Corp. 1984, 2001 1

Defining Hardware Tab Positions 69
Limiting the Size of Hardware Tab Columns 70

Using Attribute Bytes 70
Undoing Edit Interactions 71

UNDO Processing 72
Understanding Differences in SETUNDO
Processing 72

Chapter 4. Using Edit Models. 75
What Is an Edit Model? 75
How Models Are Organized 75
How to Use Edit Models 77
Adding, Finding, Changing, and Deleting Models 79

Adding Models 79
Finding Models 82
Changing Models 83
Deleting Models 83

2 z/OS V1R2.0 ISPF Edit and Edit Macros

Chapter 1. Introducing the ISPF Editor

This chapter introduces the ISPF Editor. It provides an overview of:
v The ISPF editor functions
v A typical edit session
v Edit commands
v Edit macros.

Note:

Beginning with ISPF Version 4 Release 2, ISPF enables you to more fully
utilize your desktop workstation’s potential by giving you the ability to edit
host data on the workstation, and workstation data on the host. ISPF calls
this function distributed editing.

The ISPF Workstation Tool Integration dialog, or tool integrator, is a
workstation customization tool that enables any workstation application to
use data from an MVS host system. After setting up the tool integrator, your
workstation-installed applications can interact with the ISPF View and Edit
functions and services. Data flow goes both ways with the tool integrator
connection. You can work with workstation files on the host or with host
files on the workstation.

For more information about distributed editing, refer to the ISPF User’s
Guide and the ISPF Services Guide.

What is ISPF?
The Interactive System Productivity Facility (ISPF) is a dialog manager that
provides tools to improve program, dialog, and development productivity and
control.

The PDF component of ISPF is an integrated work environment used to develop
programs, dialogs, and documents. The PDF component provides an
MVS-compatible hierarchical library containing numerous productivity-improving
functions. Some examples of these functions are:
v ISPF dialog test tools
v Full-screen editor, with a dialog interface called edit macros
v Multiple update access to data sets
v Online tutorials
v Data set management
v Customized library controls.

This book describes the ISPF editor and its dialog interface. A dialog is a program
running under ISPF. The interface allows a dialog to access the usual ISPF dialog
functions and the ISPF editor functions.

© Copyright IBM Corp. 1984, 2001 3

What the ISPF Editor Does
You can use the ISPF editor to create, display, and change data stored in ISPF
libraries or other partitioned or sequential data sets with the following
characteristics:
v Record Format (RECFM):

– Fixed or variable (non-spanned)
– Blocked or unblocked
– With or without printer control characters.

v Logical Record Length (LRECL):
– From 1 to 32760, inclusive, for fixed-length records
– From 5 to 32756, inclusive, for variable-length records.

Note: For variable-length records, the amount of editable data in each record
is 4 bytes less than the logical record length.

Generally, the editor truncates variable-length lines by removing blanks at the end
of each line during a save. If a variable-length line is completely blank and has no
line number, a blank is added so that the line length is not zero.

However, with the PRESERVE function, you can save the trailing blanks of
variable length files. The Preserve VB record length field on the Edit Entry panel
and the PRESERVE edit and macro commands enable you to save or truncate the
blanks as you prefer.

How to Use the ISPF Editor
This section provides an overview of an edit session and covers:
v Beginning an Edit Session
v Using the ISPF editor Basic Functions
v Ending an Edit Session.

Beginning an Edit Session
To begin using the ISPF editor, select option 2 on the ISPF Primary Option Menu.
PDF then displays the Edit Entry panel (Figure 5 on page 5).

What the ISPF Editor Does

4 z/OS V1R2.0 ISPF Edit and Edit Macros

|
|
|

|
|

|

Edit Entry Panel Action Bar
The Edit Entry panel action bar choices function as follows:

Menu See “Menu Action Bar Choice” on page xxxi for information on the Menu
pull-down.

Reflist
The Reflist pull-down offers the following choices:

1 Reference Data Set List displays the Reference Data Set List panel,
which displays a list of up to 30 data set names you have
referenced in PDF panels.

2 Reference Library List displays the Reference Library List panel.

3 Personal Data Set List displays the Personal Data Set List panel, of
which you can have any number, as long as each has a unique
name.

4 Personal Data Set List Open... displays the Open dialog for all
Personal Data Sets.

5 Personal Library List displays the Personal Library List panel,
which maintains up to 8 lists, each with a unique name. If more
than one list exists, the most recently used list displays.

6 Personal Library List Open... displays the Open dialog for all
Personal Library Lists.

Refmode
Refmode sets reference lists to either retrieve or execute mode. The
Refmode pull-down offers the following choices:

1 List Execute sets reference lists, personal data set list and personal
library lists into an execute mode. When you select an entry from
the list, the information is placed into the ISPF Library or the

Figure 5. Edit Entry Panel (ISREDM01)

How to Use the ISPF Editor

Chapter 1. Introducing the ISPF Editor 5

“Other” Data Set Name field and an Enter key is simulated. (If
this setting is current, the choice is unavailable.)

2 List Retrieve sets reference lists, personal data set list and personal
library lists into a retrieve mode. When you select an entry from
the list, the information is placed into the ISPF Library or the
“Other” Data Set Name field, but the Enter key is not simulated.
(If this setting is current, the choice is unavailable.)

Utilities
See “Utilities Action Bar Choice” on page xxxi for information on the
Utilities pull-down.

Workstation
Configure ISPF workstation tool integration. For information about the
workstation and ISPF, refer to the OS/390 ISPF User’s Guide.

Help The Help pull-down offers the following choices:
v General
v Types of Data Sets
v Edit entry panel
v Member selection list
v Display screen format
v Scrolling data
v Sequence numbering
v Display modes
v Tabbing
v Automatic recovery
v Edit profiles
v Edit line commands
v Edit primary commands
v Labels and line ranges
v Ending an edit session
v Appendices
v Index.

Edit Entry Panel Fields
You can specify a concatenated sequence of up to four ISPF libraries, but the
libraries must have been previously allocated to ISPF with the Data Set utility (3.2).

The fields on this panel are:

Project
The common identifier for all ISPF libraries belonging to the same
programming project.

Group The identifier for the particular set of ISPF libraries; that is, the level of the
libraries within the library hierarchy.

You can specify a concatenated sequence of up to four existing ISPF
libraries.

The editor searches the ISPF libraries in the designated order to find the
member and copies it into working storage. If the editor does not find the
member in the library, it creates a new member with the specified name.

When you save the edited member, the editor places or replaces it in the
first ISPF library in the concatenation sequence, regardless of which library
it was copied from.

Type The identifier for the type of information in the ISPF library.

How to Use the ISPF Editor

6 z/OS V1R2.0 ISPF Edit and Edit Macros

Member
The name of an ISPF library or other partitioned data set member. Leaving
this field blank or entering a pattern causes PDF to display a member list.
Refer to ISPF User’s Guide if you need information about entering a
pattern.

Data Set Name
Any fully-qualified data set name, such as ‘USERID.SYS1.MACLIB’, or a
VSAM data set name. If you include your TSO user prefix (defaults to
user ID), you must enclose the data set name in apostrophes. However, if
you omit the TSO user prefix and apostrophes, your TSO user prefix is
automatically added to the beginning of the data set name.

If you specify a VSAM data set, ISPF checks the configuration table to see
if VSAM support is enabled. If it is, the specified tool is invoked. If VSAM
is not supported by the configuration settings, an error message is
displayed.

Volume Serial
A real DASD volume or a virtual volume residing on an IBM 3850 Mass
Storage System. To access 3850 virtual volumes, you must also have
MOUNT authority, which is acquired through the TSO ACCOUNT
command.

Workstation File:

If you have made a connection to the workstation, you can also specify a
workstation file name, for example C: \AUTOEXEC.BAT, on the Edit
Entry Panel. Or you can specify which environment (host or workstation)
should be used to edit a data set. With these options, one of four editing
situations can occur:
v Edit a host data set on the host
v Edit a host data set on the workstation
v Edit a workstation file on the host
v Edit a workstation file on the workstation.

Edit a Host Data Set on the Host

The editor searches the ISPF libraries in the designated order to
find the member and copy it into working storage. If you specified
a nonexistent member of an ISPF library, a new member is created
with the specified name.

When you save the edited member, the editor places or replaces it
in the first ISPF library in the concatenation sequence, regardless of
which library it was copied from.

Edit a Host Data Set on the Workstation

The editor searches the ISPF libraries in the designated order to
find the member and copy it into working storage. The data set
name is converted to a workstation file name, and that name is
appended to the workstation’s current working directory. The host
data set is transferred to the workstation, and the working file is
then passed to the user’s chosen edit program.

When you finish the edit session, the working file is transferred
back to the host and stored in the first ISPF library in the
concatenation sequence.

Edit a Workstation File on the Host

How to Use the ISPF Editor

Chapter 1. Introducing the ISPF Editor 7

The editor searches the workstation files to find the desired file
and copy it into working storage. The workstation file name is
converted to a host data set name, and, if greater than 44
characters, it is truncated to be 44. The workstation file is
transferred to the host, where you can edit it.

When you finish the edit session, the working file is transferred
back to the workstation and stored.

Edit a Workstation File on the Workstation
This edit proceeds as it normally does on your workstation.

Initial Macro
You can specify a macro to be processed before you begin editing your
sequential data set or any member of a partitioned data set. This initial
macro allows you to set up a particular editing environment for the Edit
session you are beginning. This initial macro overrides any IMACRO value
in your profile.

If you leave the Initial Macro field blank and your edit profile includes an
initial macro specification, the initial macro from your edit profile is
processed.

If you want to suppress an initial macro in your edit profile, type NONE in
the Initial Macro field. See “Initial Macros” on page 27 and
“IMACRO—Specify an Initial Macro” on page 253 for more details.

Profile Name
The name of an edit profile, which you can use to override the default edit
profile. See the description in “What is an Edit Profile?” on page 19.

Format Name
The name of a format definition or blank if no format is to be used.

Data Set Password
The password for OS password-protected data sets. This is not your RACF
password.

Confirm Cancel/Move/Replace
When you select this field with a ″/″, a confirmation panel displays when
you request one of these actions, and the execution of that action would
result in data changes being lost or existing data being overwritten.
v For MOVE, the confirm panel is displayed if the data to be moved

exists. Otherwise, an error message is displayed.
v For REPLACE, the confirm panel is displayed if the data to be replaced

exists. Otherwise, the REPLACE command functions like the edit
CREATE command, and no confirmation panel is displayed.

v For CANCEL, the confirmation panel is displayed if any data changes
have been made, whether through primary commands, line commands,
or typing.

Note: Any commands or data changes pending at the time the CANCEL
command is issued are ignored. Data changes are ″pending″ if
changes have been made to the displayed edit data, but no
interaction with the host (ENTER, PF key, or command other than
CANCEL) has occurred. If no other changes have been made
during the edit session up to that point, the confirmation panel is
not displayed.

How to Use the ISPF Editor

8 z/OS V1R2.0 ISPF Edit and Edit Macros

Mixed Mode
When you select this field with a ″/″, it specifies that the editor look for
shift-out and shift-in delimiters surrounding DBCS data. If you do not
select it, the editor does not look for mixed data.

Edit on Workstation
You can select this option to use your workstation as the editing
environment for whichever host data set or workstation file you want to
edit.

Preserve VB record length
You can select this option to cause the editor to store the original length of
each record in variable length data sets and when a record is saved, the
original record length is used as the minimum length for the record.

Note: Double-Byte Character Set Support

The ISPF editor supports DBCS alphabets in two ways:
v Formatted data where DBCS characters are in the column positions

specified in the format definition created with the Format Utility (option
3.11)

v Mixed characters delimited with the special shift-out and shift-in
characters.
If you are using mixed mode and the record length of a data set is greater
than 72 bytes, there is a possibility that a DBCS character might encroach
on the display boundary.Here, PDF attempts to display the other
characters by replacing an unpaired DBCS character byte with an SO or SI
character. If there is a possibility that the replaced SO or SI character was
erased, the line number of the line is highlighted. If you change the
position of the SO and SI characters on the panel, or if you delete the SO
and SI characters entirely, the DBCS character on the boundary is
removed to keep the rest of the data intact.

Creating a New Data Set
Before you can edit a new sequential data set, you must allocate space for it. When
you specify an empty sequential data set or nonexistent member of a partitioned
data set, the first edit display contains several empty lines between the Top of
Data and Bottom of Data message lines (Figure 6 on page 10). The editor replaces
the quote marks on the left of the panel with sequence numbers when you type
information on the lines.

See “Creating and Replacing Data” on page 47 and “Word Processing” on page 65
for more information on using the editor to create data.

How to Use the ISPF Editor

Chapter 1. Introducing the ISPF Editor 9

Editing an Existing Data Set
When you edit an existing data set, ISPF displays the Primary Edit Panel as shown
in Figure 7.

Primary Edit Panel Action Bar Choices: The Primary Edit panel action bar
choices function as follows:

File The File pull-down offers you the following choices:

1 Save executes the SAVE command.

Figure 6. Creating a New Data Set (ISREDDE2)

Figure 7. Example Primary Edit Panel (ISREDDE2)

How to Use the ISPF Editor

10 z/OS V1R2.0 ISPF Edit and Edit Macros

2 Cancel executes the CANCEL command (which ignores all changes
made to the member) and redisplays the Edit Entry panel.

3 Exit executes the END command (which saves the data set or
member) and redisplays the Edit Entry panel.

Edit The Edit pull-down offers you the following choices:

1 Reset performs the RESET command.

2 Undo performs the UNDO command.

3 Hilite displays the Edit Color Settings pop-up.

4 Cut cuts the selected data from the file, placing it on the
clipboard.

5 Paste puts the selected data from the clipboard into the chosen
area of the current file.

Edit_Settings
When selected, causes an additional panel to display to enable you to set
the characteristics of your edit sessions.

1 Edit settings causes the additional panel to display.

Menu See “Menu Action Bar Choice” on page xxxi for information on the Menu
pull-down.

Utilities
See “Utilities Action Bar Choice” on page xxxi for information on the
Utilities pull-down.

Compilers
Foreground Compilers... offers you the following choices:

1 Assembler displays the Foreground Assembler panel.

2 COBOL displays the Foreground COBOL Compiler panel.

3 VS FORTRAN displays the Foreground VS FORTRAN Compiler
panel.

5 PL/I displays the Foreground PL/I Compiler panel.

6 VS PASCAL displays the Foreground VS PASCAL Compiler panel.

7 *Binder/Link Editor displays the Foreground Linkage Edit panel.

9 Script/VS displays the Script/VS Processor panel.

10 *VS COBOL II debug displays the Foreground VS COBOL II
Interactive DEBUG panel.

10A *OS/VS COBOL debug displays the COBOL Interactive Debug
panel.

11 *FORTRAN Debug displays the FORTRAN Interactive DEBUG
panel.

12 Member Parts List displays the Foreground Member Parts List
panel.

13 *C/370 displays the Foreground C/370 Compiler panel.

14 *REXX 370 displays the Foreground REXX/370 Compiler panel.

15 *ADA/370 displays the Foreground ADA/370 Compiler panel.

How to Use the ISPF Editor

Chapter 1. Introducing the ISPF Editor 11

16 *AD/Cycle C/370 displays the Foreground AD/Cycle C/370
Compiler panel.

18 ISPDTLC displays the ISPF Dialog Tag Language conversion
utility panel.

19 *OS/390 C/C++ displays the C/C++ for MVS/ESA compiler panel,
if you have the compiler installed on your system.

Background Compilers... offers you the following choices:

1 Assembler displays the Batch Assembler panel.

2 COBOL displays the Batch COBOL Compiler panel.

3 VS FORTRAN displays the Batch VS FORTRAN Compiler panel.

5 PL/I displays the Batch PL/I Compiler panel.

6 VS PASCAL displays the Batch VS PASCAL Compiler panel.

7 *Binder/Link Editor displays the Batch Linkage Edit panel.

10 *VS COBOL II Debug displays the Batch VS COBOL II Interactive
Debug panel.

12 Member Parts List displays the Batch Member Parts List panel.

13 *C/370 displays the Batch C/370 Compiler panel.

14 *REXX/370 displays the Batch REXX/370 Compiler panel.

15 *ADA/370 displays the Batch ADA/370 Compiler panel.

16 *AD/Cycle C/370 displays the Batch AD/Cycle C/370 Compiler
panel.

18 ISPDTLC displays the ISPF Dialog Tag Language conversion
utility panel.

19 *OS/390 C/C++ displays the ESA compiler panel, if you have the
compiler installed on your system.

20 *SOMobjects for MVS displays the SOMobjects for MVS compiler
panel, if you have the compiler installed on your system.

ISPPREP Panel utility displays the PreProcessed Panel Utility.

DTL Compiler displays the ISPF Dialog Tag Language Conversion Utility.

Test The Test pull-down offers you the following choices:

1 Functions... displays the Dialog Test Function/Selection panel.

2 Panels displays the Dialog Test Display panel.

3 Variables... displays the Dialog Test Variables panel.

4 Tables... displays Dialog Test Tables panel.

5 Log displays the ISPF Transaction Log panel.

6 Services... displays the Invoke Dialog Service panel.

7 Traces... displays the Dialog Test Traces panel.

8 Break Points... displays the Dialog Test Breakpoints panel.

9 Dialog Test... displays the Dialog Test Primary Option panel.

How to Use the ISPF Editor

12 z/OS V1R2.0 ISPF Edit and Edit Macros

10 Dialog Test appl ID... displays the Dialog Test Application ID
panel.

Help The Help pull-down offers you the following choices:
v General
v Display screen format
v Scrolling Data
v Sequence numbering
v Display modes
v Tabbing
v Automatic recovery
v Edit profiles
v Edit line commands
v Edit Primary commands
v Labels and line ranges
v Ending an edit session
v Appendices
v Index.

Editing the Data Set: When the editor displays existing data, each line consists of
a 6-column Line Command field followed by a 72-column data field. The Line
Command fields contain the first 6 digits of the sequence numbers in the data. If
the data has no sequence numbers, the Line Command fields contain relative
numbers that start at 1 and are incremented by 1.

Based on your action, the ISPF editor places the cursor in the most useful position.
To help you find the cursor, the editor intensifies the Line Command field that
contains the cursor.

If the data contains characters that cannot be displayed, blanks replace those
characters on the panel but not in the data. You cannot type over the blanks. You
can display and edit undisplayable characters by entering hexadecimal mode or by
using the FIND and CHANGE commands with hexadecimal strings. See
“HEX—Display Hexadecimal Characters” on page 247 for information on entering
hexadecimal mode.

Printer control characters, if present, are displayed and are treated as part of the
data. ASA control characters are alphanumeric and you can edit them. Machine
control characters, however, cannot be displayed and are replaced on the panel
with blanks.

When you are editing existing data, the selected member or sequential data set is
read into virtual storage, where it is updated during edit operations. Use of virtual
storage for editing work space results in high performance, but might require a
large user region. If you use all available storage, an ABEND occurs, and you lose
the work space unless recovery mode is on.

Using the ISPF Editor Basic Functions
The ISPF editor is similar to many modern word processors.Its basic functions are
simple and can be used immediately:
v To alter data, type over the existing material or use the Ins (Insert) and Del

(Delete) keys to add or remove characters.
v To view data that is not displayed, use the scroll commands. The following are

PDF default values:

How to Use the ISPF Editor

Chapter 1. Introducing the ISPF Editor 13

F7/19 Scrolls up. F10/22 Scrolls left.
F8/20 Scrolls down. F11/23 Scrolls right.

v To insert a line between existing lines, type I over a number in the Line
Command field and press Enter. The Line Command field is the 6-column row
displayed on the left side of the panel when you create or edit a data set. The
new line is inserted after the one on which you typed the I.

Note: The editor does not distinguish between input mode and edit mode. Use
the I or TE line commands to insert new lines, either between existing
lines or at the end of the data.

v To delete a line, type D over the number to the left and press Enter.
v To save your work and leave the editor, type END on the command line and

press Enter.

Ending an Edit Session
Usually, you complete your editing session with the END command and, based on
the values in your edit profile, PDF does the following:
v If autosave mode is on and you have made changes to the data:

– If both number mode and autonum mode are on, the data is renumbered. If
not, the numbers remain unchanged.

– The data is automatically saved. Special temporary lines, such as =PROF>,
=MASK>, ==ERR>, ==CHG>, =BNDS>, =TABS>, ==MSG>, =NOTE=, =COLS>, and ======
lines are not part of the data and are not saved. However, you can convert
=COLS>, ==MSG>, =NOTE=, and ====== lines to data lines and save them as part
of the data set by using the MD (make dataline) line command before
entering END.

– If stats mode is on and the data is a member of an ISPF library or other
partitioned data set, the statistics are either generated or updated, depending
on whether statistics were previously maintained for the member. If the
member is an alias, the alias indicator is turned off.

– If autolist mode is on, a source listing of the data is recorded in the ISPF list
data set for eventual printing.

v If autosave mode is off with the PROMPT operand, a prompting message is
displayed. You can issue SAVE to save the data or CANCEL to end the edit
session without saving the data.

v If autosave mode is off with the NOPROMPT operand, the data is not saved.
The result is the same as that which occurs if you enter a CANCEL command.
(You can opt to confirm cancelations by selecting that option from the Primary
Edit panel action bar Confirm choice.)

v PDF returns to the previous panel, which is either a member list or the Edit
Entry panel. If a member list is displayed, the member you just edited appears
at the top of the list.

You can end editing without saving by using CANCEL.

By default, the editor truncates variable-length lines by removing blanks at the end
of each line during a save. If a variable-length line is completely blank and has no
line number, a blank is added so that the line length is not zero.

If you select Preserve VB record length on the edit entry panel, or specify
PRESERVE on the edit service, the editor stores the original length of each record
in variable length data sets and when a record is saved, the original record length

How to Use the ISPF Editor

14 z/OS V1R2.0 ISPF Edit and Edit Macros

is used as the minimum length for the record. The minimum line length can be
changed by using the SAVE_LENGTH edit macro command. The editor always
includes a blank at the end of a line if the length of the record is zero.

Because VIEW is a special type of edit session, it is important to note that the use
of the REPLACE or CREATE commands from within VIEW always honors the
setting of the Preserve VB record length option on the edit entry panel. This
setting can be overridden by using the PRESERVE primary command.

Attention:

CANCEL cancels all changes made since the beginning of the edit session or the
last SAVE command, whichever is most recent.

The RETURN command is logically equivalent to the repeated use of the END
command. PDF performs the same actions at the end of the edit session.

When a space ABEND such as D37 occurs, ISPF unallocates the data set so that
you can swap to another screen or user ID and reallocate the data set. This does
not occur for data sets that were edited using the DDNAME parameter of the
EDIT service.

Edit Commands
You can use two kinds of commands to control editing operations: line commands
and primary commands.

Line Commands
Line commands affect only a single line or block of lines. You enter line commands
by typing them in the Line Command field on one or more lines and pressing
Enter. The Line Command field is usually represented by a column of 6-digit
numbers on the far left side of your display. When you are editing an empty data
set or member, however, the Line Command field contains quotes. This field can
also be used to define labels and to display flags that indicate special lines, such as
the =NOTE= flag, which indicates a note line.

You can use line commands to:
v Insert or delete lines
v Repeat lines
v Rearrange lines or overlay portions of lines
v Simplify text entry and formatting
v Define an input mask
v Shift data
v Include or exclude lines from the display
v Control tabs and boundaries for editing
v Convert some types of special temporary lines to data lines.

You can enter edit line commands as primary commands on the command line by
prefixing them with a colon (:) and placing the cursor on the target line. For
example, if you enter :D3 on the command line and move your cursor to line 12 of
the file, the three lines 12, 13, and 14 are deleted from the file. This technique is
normally used for PF key assignments.

See Chapter 3. Managing Data for ways you can use line commands to manipulate
data and Chapter 9. Edit Line Commands for the line command syntax.

How to Use the ISPF Editor

Chapter 1. Introducing the ISPF Editor 15

Primary Commands
Primary commands affect the entire data set being edited. You enter primary
commands by typing them on the Command line (Command ===>), usually located
on line 2, and pressing Enter. Any command entered on the edit command line is
first intercepted by ISPF. If the command entered is an Edit Primary Command or
an Edit Macro, PDF processes the command

You can use primary commands to:
v Control your editing environment
v Find a specific line
v Find and change a character string
v Combine several members into one
v Split a member into two or more members
v Submit data to the job stream
v Save the edited data or cancel without saving
v Sort data
v Delete lines
v Access dialog element models
v Run an edit macro.

You can prefix any primary command with an ampersand to keep the command
displayed on the Command line after the command has processed. This technique
allows you to repeat similar commands without retyping the command. For
example, if you type:
Command ===> &CHANGE ALL ABCD 1234

the command is displayed after the change has been made, which allows you then
to change the operands and issue another CHANGE command. You can recall
previous commands with the ISPF RETRIEVE command.

See Chapter 3. Managing Data for some of the ways you can use primary
commands to manipulate data and Chapter 10. Edit Primary Commands for the
primary command syntax.

Edit Commands and PF Key Processing
In the Edit function there are some differences between the way ISPF processes
commands when they are entered from the command line as compared to when
they are entered by a combination of the command line and a function (PF) key. In
most applications, when you press a PF key, ISPF concatenates the contents of the
command line to the definition of the function key. The result is handled as a
single command by ISPF or by the application.

When you use a PF key defined as a scroll command (UP, DOWN, LEFT, or
RIGHT) the system processes the command as follows:
v If the concatenation of the scroll command PF key definition and the contents of

the command line does not create a valid scroll command:
– If the word after the scroll command PF key definition begins with a numeric

character (0-9), you get a message telling you the scroll amount was not valid.
– Otherwise, edit processes the contents of the command line as an edit

command, then processes the scroll command using the default scroll amount.
In this case, the processing of the command line contents as an edit command
bypasses the command table, because the command table is used to resolve
the scroll key.

Edit Commands

16 z/OS V1R2.0 ISPF Edit and Edit Macros

v If the concatenation of the scroll command PF key definition and the contents of
the command line does create a valid scroll command edit scrolls the screen the
specified amount.

If you manually type a scroll command on the command line (you do not use any
PF keys) and it has an operand, the operand is checked for validity. However, in
the case of a scroll operand that is not valid, the operand is not processed as a
separate edit command as it is when used with a PF key.

Edit Macros
Edit macros are primary commands that you write. You can save time and
keystrokes by using macros to perform often-repeated tasks. To run a macro, type
its name and any operands on the Command line, and press Enter. Your
installation may have written and documented common macros for your use. Of
course, you can also write your own edit macros.

The rules for running a specific macro, and the expected results, depend on the
particular macro. Your installation is responsible for documenting these rules and
results. If you want to write your own macros, read Part 2. Edit Macros and
Chapter 11. Edit Macro Commands and Assignment Statements.

ISPF enables the installer of the program to specify an edit macro that runs for all
users. If a macro name is specified in the ISPF configuration table, then that macro
runs before any macros specified in the users’ profiles, in programs that invoke
edit, or on the edit entry panels.

The site-wide macro can be used to alter existing profiles, enforce site-wide
standards, track edit usage, deny edit and view of a data set member, or for any
other purposes for which edit macros are designed. Site-wide macros normally end
with a return code of 1 (one) in order to place the cursor on the command line.
Site-wide macros must be available to each user in the appropriate data set
concatenation (SYSPROC, STEPLIB, and so forth) or in Linklist or LPA (program
macros only).

A user can also set an application-wide macro if he chooses. See “Application-Wide
Macros” on page 28 for more information.

The effect of running a macro depends on the implementation of the macro.
Results such as cursor positioning, output messages, and so on, may or may not
conform to the results that you expect from built-in edit commands.

Editing Data in Controlled Libraries
For information about editing libraries that are controlled under LMF, refer to ISPF
Library Management Facility. For information about editing libraries that are
controlled under SCLM, refer to ISPF Software Configuration and Library Manager
(SCLM) Developer’s and Project Manager’s Guide.

Packing Data
Data can be saved in either packed or standard format. You can control the format
by using the PACK primary command to change the edit profile. The editor reads
the data in and you can edit it the way you normally would. When you end the
editing session, the data is packed and stored. See “PACK—Compress Data” on
page 267 and “PACK—Set or Query Pack Mode” on page 371 for more information.

Edit Commands

Chapter 1. Introducing the ISPF Editor 17

The packed data format has the advantage of saving space. It allows for a more
efficient use of DASD by replacing repeating characters with a sequence that
shows the repetition.

The disadvantage is that space is saved at the expense of additional processing
when the data is read or written. Also, the data cannot be directly accessed by
programs. You must access the data through PDF dialogs and library access
services. For example, a packed CLIST or REXX EXEC does not run properly
because pack mode analysis is not done before passing the CLIST or REXX EXEC
to the system.

Note: The library access services referred to in this section apply to LMF. Services
for SCLM are described in ISPF Software Configuration and Library Manager
(SCLM) Developer’s and Project Manager’s Guide

Data that is packed by PDF Version 3 Release 3 or later might not be able to be
read by releases prior to PDF Version 2 Release 2.

Edit Macros

18 z/OS V1R2.0 ISPF Edit and Edit Macros

Chapter 2. Controlling the Edit Environment

This chapter describes the editing environment and how you can customize that
environment to best suit your needs.

The PDF component defaults control much of the editing environment. However,
you can use line and primary commands to change number and statistical fields on
a data display panel and to determine how the data appears.

What is an Edit Profile?
An edit profile controls your edit session through modes and temporary lines.
These modes and lines convert data to uppercase (caps mode), automatically
renumber lines of data (autonum mode), or specify the left and right boundaries
used by other commands (=BNDS> line).

The library type (the last of the data set name qualifiers), record format (fixed or
variable), or the record length can implicitly specify an edit profile. You can choose
an edit profile in three ways:
v Issue the PROFILE command with a profile name as parameter
v Fill in the Profile field on the Edit Entry panel
v Supply a PROFILE keyword and name when calling the EDIT service, such as:

ISPEXEC EDIT PROFILE(name) ...

Using Edit Profile Types
Different kinds of data can have several different edit profiles. With this capability,
you could set up an edit profile for COBOL programs, a different edit profile for
memos, and a third edit profile for test data. Your installation determines how
many different edit profiles are available to you. Typically, 25 edit profiles are
available.

If you attempt to create more edit profiles than defined by your installation, the
least-used edit profile is deleted first. Locked edit profiles are not deleted unless all
your edit profiles are locked. In that case, the least-used locked edit profile is
deleted first. Again, if you continue to add edit profiles, all of the unlocked edit
profiles are deleted before locked edit profiles.

You can control the use of profiles from the Edit Entry panel. If you leave the
Profile Name field blank, the profile name defaults to the data set type, which is
the last qualifier in the data set name. If you type a profile name, it overrides the
data set type qualifier. In either case, if a profile of that name currently exists, it is
used. If it does not exist, a new profile is defined. The initial contents of the new
profile include the default mode settings, all-blank mask and tabs, and default
bounds. To eliminate the profile lines from your panel, use the RESET command.

Displaying or Defining an Edit Profile
You can display none, all, or part of an edit profile by entering the following
command:
PROFILE [name] [number]

© Copyright IBM Corp. 1984, 2001 19

where name is the name of the edit profile that you want to display and number is
a number from 0 to 9. If you omit both operands the editor displays the first five
lines of the profile at the top of the data area.

Note: See “Primary Edit Panel Action Bar Choices” on page 10 for information on
the action bar choices on this panel.

The first five lines of the edit profile (Figure 8) are the current mode settings. The
remaining lines are the current contents of the =TABS>, =MASK>, and =BNDS> lines,
with the =COLS> positioning line. When no operands are entered,the first five lines,
which contain the =PROF> flags, are always displayed. However, the =MASK> and
=TABS> lines do not appear if they contain all blanks; if the =MASK> and/or
=TABS> lines do contain data, they appear, followed by the =COLS> line.

The =BNDS> line does not appear if it contains the default boundary positions. It
does appear when the bounds are set to something other than the default, and no
’number’ parameter is entered into the PROFILE command.

Note: If enhanced edit coloring is not enabled for the edit session, the profile line
displaying HILITE status is not shown. If highlighting is available, and if
you explicitly set the language, then the language appears in RED on color
terminals.

If you include the name of an existing profile, the editor immediately switches to
the specified profile and displays it.

If you include a new profile name, the editor defines a profile using the current
modes, options and temporary lines.

The number operand controls the number of lines shown in the profile display. If
you type the number 0, the profile is not displayed. If you type a number from 1
through 8, that number of lines of the profile is displayed. If you type the number

Figure 8. Edit Profile Display (ISREDDE2)

Displaying or Defining an Edit Profile

20 z/OS V1R2.0 ISPF Edit and Edit Macros

9, the complete profile is displayed, even if the =MASK> and =TABS> lines are blank
and the =BNDS> line contains the defaults. Since masks are ignored when using a
format name, the ″=MASK>″ line is not displayed by the profile command in
formatted edit sessions.

Modifying an Edit Profile
You modify an edit profile by entering commands to set various modes, options,
and temporary lines. Whenever you change an edit profile value, PDF saves the
value (unless the edit profile is locked). The next time you edit data using the edit
profile, the data is retrieved and the environment is set up again. This is easier
than it sounds. First, there are defaults for all the modes, and, in most cases, you
do not need to change them. Second, if you decide that you want to change a
mode, you just enter the appropriate command. The edit profile is automatically
changed and saved for you. See “Edit Modes” for more information about the edit
modes.

Locking an Edit Profile
Once you have an edit profile exactly the way you want it, you can lock it. To do
this, type PROFILE LOCK and press Enter. The edit profile is saved with all the
current modes, options, and temporary lines, and it is marked so that the saved
copy of the edit profile is not changed. Usually, each time you begin an editing
session the edit profile you start with is exactly the way you locked it. The
exceptions are caps, number, stats, and pack, which are made to match the data
and are noted with messages. You can change a mode during an editing session,
but if the edit profile is locked, the change affects only the current session; it does
not affect any later sessions.

If you have locked your current edit profile, you cannot change the initial macro
name with IMACRO. For information on IMACRO, see “IMACRO—Specify an
Initial Macro” on page 253. For information on the LOCK operand, see
“PROFILE—Control and Display Your Profile” on page 269.

Edit Modes
The edit modes control how your edit session operates. To set these modes, use the
associated primary commands. For example, if you are editing a COBOL program
that is in uppercase and you want all your input to be converted to uppercase, set
caps mode on by entering CAPS ON.

The following list summarizes the primary commands you use to display and
change your edit profile. See Chapter 10. Edit Primary Commands for a complete
description and for the operands you can type with the commands.

PROFILE
Displays the current setting of each mode in this list and controls whether
changes to these settings are saved.

AUTOLIST
Controls whether a copy of the saved data is automatically stored in the
ISPF list data set.

AUTONUM
Controls whether lines of data are automatically renumbered when the
data is saved.

AUTOSAVE
Controls whether data is saved when you enter END.

Displaying or Defining an Edit Profile

Chapter 2. Controlling the Edit Environment 21

CAPS Controls whether alphabetic characters are stored in uppercase when the
data is saved.

HEX Controls whether data is displayed in hexadecimal format.

HILITE
Controls the use of enhanced edit color.

IMACRO
Names an edit macro used at the start of the edit session.

NOTES
Controls whether tutorial notes are included in an Edit model.

NULLS
Controls whether blank spaces at the end of a line are written to the panel
as blanks or nulls. The difference is that nulls allow you to insert data;
blanks do not.

NUMBER
Controls the generation of sequence numbers in a data set.

PACK Controls whether ISPF packs (compresses) the data when it is saved.

RECOVERY
Controls the recovery of an edit session following a system failure.

SETUNDO
Controls the method of saving changes for the UNDO command.

STATS
Controls whether statistics for a data set are generated.

TABS Controls tab settings for aligning data.

Edit Profile Modes
The data you edit controls four special edit profile modes. These modes are set
when data is first edited or new data is copied in.

Caps mode
The editor sets caps mode on if it detects that a member to be edited
contains no lowercase characters and sets caps mode off if the member
does contain lowercase characters.

Number mode
The editor sets number mode on and changes number options if it detects
that the data contains valid sequence numbers. It sets number mode off if
the data does not contain valid sequence numbers.

Pack mode
The editor sets pack mode on if the data being edited was previously
saved in packed format and sets pack mode off if the data was not
previously saved in packed format.

Stats mode
The editor sets stats mode on if the member being edited currently has
ISPF statistics and sets stats mode off if the member did not previously
have ISPF statistics.

The ISPF editor changes the special data modes even if the original edit profile of
the member edit profile is locked. However, for locked profiles, it does not save
the changes to the profile.

Edit Modes

22 z/OS V1R2.0 ISPF Edit and Edit Macros

For your convenience, the editor changes the special data modes automatically to
correspond to the data. This allows you to have a single data set and to use the
default edit profile, even though some members may contain programs (CAPS ON)
while other members contain text (CAPS OFF). Some of the members may have
statistics to be maintained, while other members are stored without statistics. Some
members may be in packed data format, while others are in standard data format.
And finally, and perhaps most important, some members may be
sequence-numbered, while others are not.

When the editor changes your edit profile to correspond to the data, special
message lines appear. If you want to override the change, enter the appropriate
command. For example, if the editor changes caps mode from on to off because it
finds lowercase characters in the data, you just type CAPS ON and press Enter to
reset it.

If you have special requirements, you might not want the editor to change the
special modes. You may want to have caps mode on, even if the data contains
lowercase data, or you may want to generate statistics on output, regardless of
whether the member originally had statistics. If so, you can write an initial macro
to specify how the editor is to run these special modes. You would then use
IMACRO to associate the initial macro with the edit profile. See “Initial Macros” on
page 27 for more information on initial macros.

Edit Mode Defaults
PDF saves several different edit modes in an edit profile. The user can specify the
desired edit profile on the Edit Entry Panel. If the Profile field is left blank, the
data set type is used as the profile name.

To preinitialize a set of edit profiles for first-time users, do the following:
1. Enter PDF.
2. Select the Edit option.
3. Set the edit profile with the defaults you chose.

For example, to set your “COBOL FIXED 80” profile, edit a member of a
partitioned data set that has a RECFM of F or FB, a LRECL of 80, and a type
qualifier of COBOL (or enter COBOL as the profile name on the Edit Entry
Panel).

ISPF provides two methods for setting defaults for new edit profiles. You can set
up a profile called ZDEFAULT in the ISPTLIB concatenation, or you can modify
the edit profile defaults in the ISPF configuration table. IBM strongly recommends
using the ISPF configuration table method because it is easier to maintain than the
ZDEFAULT method. The ZDEFAULT method can still be used by individual users.

Site-wide Edit Profile Initialization
When no ZDEFAULT profile exists in the ISPTLIB concatenation and the user has
no edit profile member in the ISPPROF concatentation, new edit profiles are
created based on the settings in the ISPF configuration table. Using the
configuration table, you can change any of the defaults for new edit profiles and
you can override (force) settings for PACK, RECOVERY, RECOVERY WARN,
SETUNDO, AUTOSAVE, and IMACRO in existing profiles. When a setting is
forced the editor WILL CHANGE the users’ profiles, so be very careful if you
override the IMACRO setting. IBM recommends that you use the site-wide initial
macro instead of forcing the initial macro in each user’s profile.

Edit Modes

Chapter 2. Controlling the Edit Environment 23

It is helpful to understand when the ZDEFAULT profile is used and where it exists
in a user’s concatenations. The ZEDFAULT profile exists as a row of the edit
profile table named xxxEDIT, where xxx is the application profile.

If ZDEFAULT exists in the edit profile table in the ISPTLIB concatenation, and the
user has NO edit profile table in the ISPPROF allocation, the ZDEFAULT profile is
copied from ISPTLIB into the user’s edit profile when the user’s edit profile is
created. Therefore, many of your existing users might already have a ZDEFAULT
profile in their edit profile. Individual users can delete their ZDEFAULT profiles
using the PROFILE RESET command from within an edit session. Doing so allows
them to use the site-wide configuration for new profiles. You can also use a
site-wide edit initial macro to issue a PROFILE RESET for all users. ISPF does not
ship any edit profiles.

Note: If you use the force settings such as PACK OFF, edit macro commands that
attempt to change forced settings will not receive a failing return code, but
the settings will not change.

Creating a ZDEFAULT Edit Profile
Set up a special edit profile named ZDEFAULT (enter ZDEFAULT as the profile
name on the Edit Entry Panel). The ZDEFAULT profile is the one used for the
initial settings whenever a new edit profile is generated, regardless of the RECFM
and LRECL values. For example, if you do not have an ASM profile and you edit
an ASM data set, an ASM profile is generated using ZDEFAULT for the initial
settings. If no ZDEFAULT profile exists, it is automatically generated with the
following settings:
Modes set on:

CAPS STATS NUMBER
Modes set off:

RECOVERY HEX NULLS TABS AUTONUM AUTOLIST PACK
Profile set to:

UNLOCK
IMACRO set to:

None
SETUNDO set to:

STG
HILITE set to:

ON AUTO (CURSOR, FIND, PAREN and LOGIC matching are inactive)

The number of profiles you can establish is described in the configuration table.
See “Displaying or Defining an Edit Profile” on page 19 for more details. When
you finish, exit PDF. Your entire set of edit profiles is saved in your profile library
(referenced by ddname ISPPROF) as the ISREDIT member.

Flagged Lines
Flagged lines are lines that contain highlighted flags in the line command area.
These lines can be divided into the following categories:
v Changed lines
v Error lines
v Special lines.

The flags in the line command area are not saved when you end an edit session.

Edit Modes

24 z/OS V1R2.0 ISPF Edit and Edit Macros

Changed Lines
==CHG> Shows lines that were changed by a CHANGE or RCHANGE command.

Error Lines
==ERR> Shows lines in which PDF finds an error when you enter a line, primary,

or macro command. For example, when you enter a CHANGE command,
there is not enough room on the line to make the change.

Special Lines
Special lines can be divided into two categories:
v Edit profile lines (the values associated with these lines are stored in your edit

profile):

=PROF> Contains the settings of the individual edit modes. This line is not saved
as part of your data set or member. See “Edit Modes” on page 21 for
more information.

=TABS> Defines tab positions. This line is not saved as part of your data set or
member.

=MASK> Can contain data to be inserted into your data set or member when you
use the I (insert) line command. This line is not saved as part of your
data set or member.

=BNDS> Specifies left and right boundaries that are used by other commands.
This line is not saved as part of your data set or member.

=COLS> Identifies the columns in a line.

The column identification line can be saved as part of the data set or
member if you use the MD (make dataline) line command to convert it
to a data line.

v Message, note, and information lines:

==MSG> Message lines inform you of changes to the edit profile. These changes
are caused by inconsistencies between the data to be edited and the edit
profile settings. Message lines also warn you that the UNDO command
is not available when edit recovery is off.

You can insert message lines manually by using an edit macro that
contains the LINE_AFTER and LINE_BEFORE assignment statements.

Message lines are not saved as part of the data set or member unless
you use the MD (make dataline) line command to convert them to data
lines.

=NOTE= Note lines display information when you insert edit models. However,
these lines do not appear if the edit profile is set to NOTE OFF.

You can insert note lines manually by using an edit macro that contains
the LINE_AFTER and LINE_BEFORE assignment statements.

Note lines are not saved as part of the data set or member unless you
use the MD (make dataline) line command to convert them to data lines.

====== Temporary information lines are lines you can add to provide temporary
information that is not saved with the data. They can be inserted into an
edit session by using an edit macro containing the LINE_AFTER and
LINE_BEFORE assignment statements.

Flagged Lines

Chapter 2. Controlling the Edit Environment 25

Information lines are not saved as part of the data set or member unless
you use the MD (make dataline) line command to convert them to data
lines.

Edit Boundaries
Boundary settings control which data in a member or data set is affected by other
line, primary, and macro commands. You can change the boundary settings by
using either the BOUNDS line command, primary command, or macro command.
Table 1 shows commands that work within the column range specified by the
current boundary setting:

Table 1. Commands for Use with Boundary Setting Column Range
Line Commands Primary Commands Macro Commands
< CHANGE CHANGE SHIFT <
> EXCLUDE EXCLUDE SHIFT >
(FIND FIND SHIFT (
) LEFT LEFT SHIFT)
O RCHANGE RCHANGE SORT
TE RFIND RFIND TENTER
TF RIGHT RIGHT TFLOW
TS SORT SEEK TSPLIT

USER_STATE

This column range is in effect unless you specify overriding boundaries when
entering a command. Refer to the individual command descriptions for the effect
the current bounds settings have.

If you do not explicitly set bounds, the editor uses the default bounds. These
bounds change as the number mode changes. If you have changed the bounds
settings for a data set and would like to revert to the default settings, you can use
any BOUNDS command to do so. Table 2 shows the default bounds settings for
various types of data sets:

Table 2. Default Bounds Settings for Data Sets

RECFM Data Set Type Number Mode BNDS When
LRECL=80

BNDS Using
Other LRECL

FIXED ASM ON STD 1, 71 1, LRECL-8

OFF 1, 71 1, LRECL

COBOL OFF 1, 80 1, LRECL

ON STD 1, 72 1, LRECL-8

ON COBOL STD 7, 72 7, LRECL-8

ON COBOL 7, 80 7, LRECL

OTHER ON STD 1, 72 1, LRECL-8

OFF 1, 80 1, LRECL

VARIABLE ALL ON STD 9, record length N/A

OFF 1, record length N/A

Flagged Lines

26 z/OS V1R2.0 ISPF Edit and Edit Macros

If the default boundaries are in effect, they are automatically adjusted whenever
number mode is turned on or off. If you have changed the bounds from the
default settings, they are not affected by the setting of number mode.

If a left or right scroll request would cause the display to be scrolled ’past’ a left or
right bound, the scrolling stops at the bound. A subsequent request then causes
scrolling beyond the bound.

This scrolling feature is especially useful when you are working with data that has
sequence numbers in the left hand columns. It allows left and right scrolling up to
(but not past) the bounds so that the sequence numbers are normally excluded
from the display.

If you specify an invalid value for either the left or right boundary when changing
the current boundary settings, the editor resets the value for that boundary to the
default. The following constitute invalid boundary values:
v A right boundary value that is greater than the logical record length of a

fixed-block file if the file is unnumbered.
v A right boundary value that is greater than the logical record length-8 of a

fixed-block file if the file with standard numbers.
v A right boundary value that is greater than the logical record length-4 of a

variable-block file.
v A left boundary value that is less than or equal to 8 for a variable-block file with

standard numbers
v A left boundary value that is less than or equal to 6 for a file that is numbered

with COBOL numbers.

Initial Macros
The editor runs an initial macro after it reads but before it displays data. The
macro might initialize empty data sets, define program macros, or initialize
function keys.

For example, if you want caps mode on, even if the data contains lowercase data,
create an initial macro with a CAPS ON command. The editor first reads the edit
profile and the data, then it sets caps mode to correspond to the data. Next, it runs
your initial macro, which overrides the edit profile setting of caps mode.

You can specify an initial macro in one of the following ways:
v Store the macro name in the edit profile with the IMACRO command:

Command===> IMACRO INITMAC

See “IMACRO—Specify an Initial Macro” on page 253 for more information on
the IMACRO command.

v Specify the initial macro name on the Edit Entry panel:
INITIAL MACRO ===> initmac

v Specify the initial macro name on the EDIT service call:
ISPEXEC EDIT DATASET(dsname) MACRO(initmac) ...

Once specified, the initial macro runs at the beginning of each edit session that
uses the profile. It may be overridden by an initial macro typed in the INITIAL
MACRO field on the Edit Entry panel or specified on the EDIT service call. You
can type NONE in the INITIAL MACRO field to suppress the initial macro defined
in the profile.

Edit Boundaries

Chapter 2. Controlling the Edit Environment 27

If the current profile is locked, the IMACRO command cannot be run.

Remember that commands referencing display values (DISPLAY_COLS,
DISPLAY_LINES, DOWN, LEFT, RIGHT, UP, LOCATE) are invalid in an initial
macro because no data has been displayed.

If the initial macro issues either an END or CANCEL command, the member is not
displayed.

Application-Wide Macros
You can specify a macro to run at the beginning of your edit sessions by placing a
varible called ZUSERMAC in either the shared or profile pool. ZUSERMAC must
contain the name of the macro and cannot include any operands. ZUSERMAC
must not be longer than 8 characters long.

If ZUSERMAC exists in the profile or shared pool, the macro it specifies is run
after the site-wide initial macro, and before the initial macro specified on the edit
panel, on EDIT service command, or in the edit profile.

If you want to remove the user application-wide macro, you can issue the VERASE
service to remove ZUSERMAC from the shared or profile pool.

Statistics for PDS Members
If stats mode is on, PDF creates and maintains statistics for partitioned data set
members. The following sections explain the effect stats mode has on your
statistics, first when you are beginning an edit session and then when you are
saving data.

Note: Stats mode is ignored for sequential data sets.

Included in the statistics are version and modification levels. These numbers can be
useful in controlling library members. See “Sequence Number Format and
Modification Level” on page 30 for a discussion of how the generation of statistics
affects the format of sequence numbers.

Effect of Stats Mode When Beginning an Edit Session
Whenever a member is retrieved for editing, the ISPF editor checks the setting of
stats mode. PDF does not display any warning messages if the stats mode and the
member are consistent. For example:
v If the stats mode is on and the member has statistics
v If the stats mode is off and the member does not have statistics.

If the stats mode and the member are not consistent, however, PDF displays a
warning message. For example:
v If stats mode is on and the member has no statistics, PDF displays a warning

message, but does not change the stats mode.
v If stats mode is off and the member has statistics, PDF automatically turns on

stats mode and displays a message indicating the mode change.

Effect of Stats Mode When Saving Data
If stats mode is on when you save the member, PDF updates the statistics, or
creates statistics if the member did not previously have them.

Initial Macros

28 z/OS V1R2.0 ISPF Edit and Edit Macros

If stats mode is off when you save the member, PDF does not store any statistics;
any previous statistics are destroyed.

Stats mode is saved in the edit profile.

Version and Modification Level Numbers
Two of the statistics that the editor creates and maintains for members of ISPF
libraries and partitioned data sets (when stats mode is on) are the version and
modification level numbers. These numbers are displayed in the form VV.MM at the
top of the edit panel following the data set name.

When the editor creates statistics for a new member, the default version and
modification level numbers are 01 and 00, respectively. Otherwise, the values are
taken from the previous statistics stored with the member.

You can change the version number with the VERSION command.

The modification level number appears in the last 2 digits of the line numbers for
new or changed lines to provide a record of activity. The number is automatically
incremented by one when the first change is made to the data. It can also be
changed explicitly with the LEVEL command. The numbers for both can range
from 00 to 99, inclusive. After the modification level number reaches 99, it does not
increment by one to return to level 00.

The editor normally increments the modification level the first time that data is
changed. This incrementing is suppressed if:
v You have set the modification level with a LEVEL command before making the

first change.
v Statistics did not previously exist, and the editor has set the modification level to

0 for a new member.

If both stats mode and standard sequence number mode are on, the current
modification level replaces the last two positions of the sequence number for any
lines that are changed. At the time the data is saved, it is also stored for any lines
that already are marked with a modification level higher than the current
modification level. If you type LEVEL 0, press Enter, and then save the data, all
lines are reset to level 0. See “LEVEL—Specify the Modification Level Number” on
page 254 for more information.

Sequence Numbers
Each line on the panel represents one data record. You can generate and control the
numbering of lines in your data with the following commands:

AUTONUM
Automatically renumbers data whenever it is saved, preserving the
modification level record.

NUMBER
Turns number mode on or off, and selects the format.

RENUM
Renumbers all lines, preserving the modification level number.

Statistics for PDS Members

Chapter 2. Controlling the Edit Environment 29

UNNUMBER
Turns off numbering and blanks the sequence number fields on all lines.
This deletes all modification level records.

Sequence Number Format and Modification Level
Sequence numbers can be generated in the standard sequence field, the COBOL
sequence field, or both:
v The standard sequence field is the last 8 characters for fixed-length records, or the

first 8 characters for variable-length records, regardless of the programming
language.Use NUMBER ON STD to generate sequence numbers in the standard
sequence field.
For members of partitioned data sets, the format of standard sequence numbers
depends on whether statistics are being generated. If statistics are being
generated, standard sequence numbers are 6 digits followed by a 2-digit
modification level number. The level number flag reflects the modification level
of the member when the line was created or last changed. If, for example, a
sequence number field contains 00040002, the line was added or last changed at
modification level 02. The sequence number is 000400.
If stats mode is off, or if you are editing a sequential data set, standard sequence
numbers are 8 digits, right-justified within the field.

v The COBOL sequence field is always the first 6 characters of the data and is valid
only for fixed-length records.Use the NUMBER ON COBOL or NUMBER ON
STD COBOL to generate COBOL sequence numbers.
Attention:

If number mode is off, make sure the first 6 columns of your data set are blank
before using either the NUMBER ON COBOL or NUMBER ON STD COBOL
command. Otherwise, the data in these columns is replaced by the COBOL
sequence numbers. If that happens and if edit recovery or SETUNDO is on, you
can use the UNDO command to recover the data. Or, you can use CANCEL at
any time to end the edit session without saving the data. COBOL sequence
numbers are always 6 digits and are unaffected by the setting of stats mode.

Sequence numbers usually start at 100 and are incremented by 100. When lines are
inserted, the tens or units positions are used. If necessary, one or more succeeding
lines are automatically renumbered to keep the sequence numbers in order.

Sequence Number Display
For numbered data, the Line Command field displayed to the left of each line
duplicates the sequence number in the data. Normally, the editor automatically
scrolls left or right to avoid showing the data columns that contain the sequence
numbers. However, you can explicitly scroll left or right to display the sequence
numbers. The DISPLAY operand of the NUMBER and RENUMBER commands
also causes the editor to display the sequence numbers.

For example, assume that the data has COBOL numbers in columns 1 through 6
and the number mode is NUMBER ON COBOL. When the data is displayed, column 7 is
the first column displayed. If you change number mode to NUMBER OFF, the data is
scrolled so that column 1 is the first column displayed. If you then change number
mode to NUMBER ON, the data is scrolled back to column 7. But if you change
number mode to NUMBER ON DISPLAY, the sequence numbers in columns 1 through
6 remain displayed. The sequence numbers in columns 1 through 6 become part of
the data window, but cannot be modified.

Sequence Numbers

30 z/OS V1R2.0 ISPF Edit and Edit Macros

Initialization of Number Mode
When you retrieve data for editing, the editor determines whether it contains
sequence numbers. The editor always examines the standard sequence field. It
examines the COBOL sequence field if the data set type (the lowest level qualifier
in the data set name) is COBOL.

If all lines contain numeric characters in either the standard or COBOL sequence
field positions, or both, and if the numbers are in ascending order, the editor
assumes the data is numbered and turns on number mode. Otherwise, the editor
turns off number mode.

If the first setting of the number mode differs from the setting in the edit profile, a
message indicating that the editor has changed the mode is displayed. For new
members or empty sequential data sets, the first setting of number mode is
determined by the current edit profile. For a new edit profile, the default is NUMBER
ON for standard sequence fields, and NUMBER ON COBOL if the data set type is
COBOL.

Enhanced and Language-sensitive Edit Coloring
The editor provides language-sensitive coloring as a productivity aid for users who
are editing program source. It is used in a variety of programming languages.
Some coloring enhancements are also useful for editing data other than program
source.

Note: Language-sensitive and enhanced coloring of the edit session is only
available when enabled by the installer or the person who maintains the
ISPF product. For information on enabling the enhanced color functions, see
ISPF Planning and Customizing

These enhancements allow programmers to immediately see simple programming
errors, such as mismatched quotes or parentheses, unclosed comments, and
mismatched logical constructs. The language-sensitive component allows you to
take advantage of the editor’s coloring capabilities for a number of programming
languages simultaneously. Enhanced coloring is also a general productivity aid,
because it improves your ability to locate text quickly.

The editor provides enhanced highlighting in the following areas:
1. Programming language constructs, including the following:

v Keywords for each individual language
v Comments
v Quoted strings (using both single and double quotes)
v Compiler directives (C, COBOL, PL/I, and PASCAL only)
v Special characters that the user chooses.

2. Language-sensitive program logic features, such as logical blocks and IF/ELSE
logic.

3. Any strings that match the previous FIND operation or that would be found by
an RFIND or RCHANGE request.

4. Default color for the data area in non-program files.
5. The phrase containing the cursor in the data area.
6. Characters that have been input since the previous Enter or function key entry

was pressed.

Note: Highlighting is not available for edit sessions that involve the following:

Sequence Numbers

Chapter 2. Controlling the Edit Environment 31

v Only CURSOR and FIND highlighting is valid for data sets with record
lengths greater than 255

v Mixed mode edit sessions (normally used when editing DBCS data)
v Formatted data.

Language Support
The following languages are supported for language-sensitive coloring:
v Assembler
v BookMaster
v C
v COBOL
v ISPF Dialog Tag Language (DTL)
v ISPF Panels (non-DTL)
v ISPF Skeletons
v JCL (Job Control Language)
v Pascal
v REXX
v PL/I
v OTHER, which includes languages that use constructs similar to PL/I, such as

DO, BEGIN, END, SELECT, and so forth. Limited support for CLIST is provided
with the OTHER language. OTHER does not support any compiler directives.

Automatic Language Selection
If you choose not to set the language explicitly, the editor can automatically
determine the language of the part being edited. The language is determined by
looking at the first non-blank string in the file. In cases where ambiguity exists
between languages, as in the case C and JCL (both may start with //) or PL/I and
REXX (both may start with a /* comment), the last qualifier of the data set name
may be used to determine the language. Rules for automatic language recognition
are as follows:

Assembler Asterisk in column 1 or a recognized opcode of
CSECT, DSECT, MACRO, TITLE, START or COPY.

Note: *PROCESS in column 1 is recognized as
PL/I.

BookMaster First character is . or : in column 1.

C Any of the following:
v First string is #
v First string is // and data set type is not .CNTL,

.JCL, or ISPCTLx
v First string is /* and data set type is .C.

COBOL First non-blank is a * or / in column 7.

ISPF DTL First non-blank character is <.

ISPF Panel First string is) in column 1, followed by a panel
section name, or the first string is % in column 1.

ISPF Skeleton) in column 1 in a file that does not seem to be a
panel.

JCL Any of the following:
v //anything followed by the word COMMAND,

DD, ELSE, ELSEIF, EXEC, IF, INCLUDE, JCLLIB,

Enhanced Edit Coloring

32 z/OS V1R2.0 ISPF Edit and Edit Macros

JOB, OUTPUT, PROC, SET, XMIT, or any word
beginning with the characters ’MSG’

v //* in column 1
v // in column 1, and the data set type is .CNTL,

.JCL, or ISPCTLx
v Any of the following in column 1:

*$
/*JOBPARM
/*MESSAGE
/*NETACCT
/*NOTIFY
/*OUTPUT
/*PRIORITY
/*ROUTE
/*SETUP
/*SIGNOFF
/*SIGNON
/*XEQ
/*XMIT

PASCAL First string is (*, or the first string is /* and the
data set name ends in .PASCAL.

PL/I First string is % or /* or the first string is
*PROCESS in column 1. The use of carriage control
characters in column one may cause PL/I detection
to fail. For data sets names with a final qualifier
starting with ″PL″, automatic language detection is
retried ignoring column one if the first non-blank
characters occur in column one, and no language
can be detected. See REXX, C, and Panel for more
information.

REXX First string is a /* comment containing REXX, or
the first string is a /* comment, and the data set
type is .EXEC or .REXX.

Other First word is PROC, CONTROL, ISPEXEC, or
ISREDIT.

HILITE AUTO selects a language based on the first non-blank line, and in some
cases, the last qualifier of the data set name.

The PDF component only scans a maximum of 72 bytes of data per line to
determine the language. If the data which would determine the language is past
the 72nd column, the PDF component may incorrectly determine the language.

Language Processing Limitations and Idiosyncracies
Because the PDF component does not provide true parsing, the built-in language
scanner does not operate as a syntax checker. Keywords or built-in function names
that are used as variables, and therefore not used in a language context, will be
highlighted as keywords. For example, in context sensitive languages, such as
PL/I, the word ’ELSE’ may be used as a variable name. PDF treats ’ELSE’ as a
keyword in all cases, both for highlighting and logic determination.

Enhanced Edit Coloring

Chapter 2. Controlling the Edit Environment 33

In addition, the varying implementations and release schedules of the supported
languages may result in keyword highlighting that does not reflect the latest
version of the language.

Note: Nested comments are only supported when the language is REXX. When
sequence numbers are in use, the editor only highlights the editable data.
The sequence numbers are shown in the overtype color.

Also, because the language scanners of edit highlighting do not provide true
parsing, when an unmatched end tag is encountered and the LOGIC option is
enabled, subsequent end tags might be highlighted as unmatched, even if they
appear to be properly matched.

Recognized Special Symbols: Special characters can be highlighted for each
specific language. The characters are only highlighted if they are not part of
another class of constructs such as a comment, a string, or a compiler directive.
The default set of characters for each language follows:
Assembler −+*/=<>&¬|:,
BookMaster &.,!?$
C −+*/=<>&¬|:!;¦%?#[] \
COBOL .
DTL <>()=
Panel &
Skel &
JCL (),|<>¬&=
Pascal −+*/=<>&¬|:[]
PL/I −+*/=<>&¬|:
REXX −+*/=<>&¬|:%\
Other −+*/=<>&¬|:

These character sets may be changed by each user using the HILITE dialog.

Assembler: Highlighting is performed only in columns 1 through 72.

Specific keywords are not highlighted. Any word where an opcode would be
expected is highlighted as a keyword.

BookMaster: Only BookMaster tags that begin with a colon (:) are highlighted. All
tags should be terminated by a period, because ISPF highlights up to the next
period. Dot control words (.xx) are never highlighted.

The keyword list supplied by the ISPF comprises the tags used to do logic
matching (:xxx/:exxx). Tags that have an optional end tag must have a matching
end tag in the edited data for logical highlighting to work. The LOGIC option
highlights unmatched end tags (:exxx tags which do not have a corresponding :xxx
tag) in reverse video pink.

BookMaster tags are not checked for validity. If you specify a colon (:) as a special
character to highlight, the editor does not recognize BookMaster tags.

C: C++ comments (//) are recognized.

Logical highlighting highlights curly braces ({ and }).

Keywords are case-sensitive in C. Only the lower case versions of keywords are
highlighted.

Enhanced Edit Coloring

34 z/OS V1R2.0 ISPF Edit and Edit Macros

COBOL: Highlighting is performed only in columns 7 through 72.

Both single quotes (’) and double quotes (″) are treated as unique open and close
quote characters, although some COBOL languages only specifies double quotes as
string delimiters. Compiler directives (also called compiler-directing statements) are
supported for IBM SAA AD/Cycle COBOL/370 Version 1.1.

DTL: Only items in tags are highlighted. Any less than sign (<) is assumed to
start a tag. This may cause highlighting errors if the ’<’ symbol appears outside of
a DTL tag.

Panels and Skeletons:

Quoted strings are terminated at the end of a line. For the most part, the PDF
component does not parse panels or skeletons. Usually any data on a line that
starts with a ’)’ in column 1 is highlighted as a keyword.

JCL: Because automatic language determination recognizes C++ comments (//),
JCL is recognized only if any of the following conditions is met:
v The last qualifier of the data set name is JCL, CNTL, or PROCLIB or ISPCTLx

(where x is any character)
v The 2nd non-blank ’word’ of the 1st non-blank line is DD, JOB, EXEC, or PROC
v The 2nd non-blank ’word’ of the 1st non-blank line starts with ’MSG’. This is for

JCL with no JOB card, but with MSGLEVEL or MSGCLASS.
v The first three characters in the first non-blank line are //*.

Conditional JCL logic (IF/ELSE) is highlighted, but is not supported by the LOGIC
option.

When the word DATA appears as the first word in a line or statement, HILITE
assumes that this is a DD DATA statement and colors subsequent lines as
in-stream data. To avoid this, insure that DATA is not the first word on a line by
placing other keywords before it. For example, instead of coding
//DCOBA2 PROC PROG=,
// OPTCOB='DYN',
// DATA='DATA(24)',
// OUT='*',
// USER='D0000',

move the operand starting with ″DATA″ to the same line as the previous operand:
//DCOBA2 PROC PROG=,
// OPTCOB='DYN', DATA='DATA(24)',
// OUT='*',
// USER='D0000',

PL/I: For fixed length record format data sets, column 1 is not scanned after the
first non-blank line, except to search for *PROCESS statements.

REXX: Logic highlighting does not support a terminating semicolon in the IF
expression, or a semicolon before the THEN or ELSE instructions.

In addition, IF statements which have the THEN keyword on the following line
but do not have a continuation character at the end of the IF expression will cause
highlighting errors.

For example, although the following statements are valid in REXX, the ELSEs will
be highlighted as a mismatched ELSEs.

Enhanced Edit Coloring

Chapter 2. Controlling the Edit Environment 35

IF a=b; THEN say 'ok'; ELSE; say 'Not OK';
IF a=b

THEN say 'ok';
ELSE say 'Not OK';

Other: When OTHER is in effect, ISPF tries to determine if the program is a
CLIST by checking for a first word of PROC, CONTROL, ISPEXEC or ISREDIT. If
ISPF determines that the data being edited is a CLIST, then CLIST comment
closure and continuation rules apply.

The HILITE Command/Dialog
PDF supports enhanced and language-sensitive coloring in edit through a new edit
primary and macro command called HILITE. However, the basic functions of
HILITE cannot be accessed through a dialog that utilizes the GUI interface.

HILITE Operands
ON Sets program coloring ON and turns LOGIC off.

OFF Sets coloring OFF, with the exception of cursor highlighting.

LOGIC
Turns on both IF and DO logic matching. When logic matching is active,
only comments are specially colored. All other code, other than logic
keywords, is shown in the default color.

IFLOGIC
Turns on IF/ELSE logic matching.

DOLOGIC
Turns on DO/END logic matching.

NOLOGIC
Same as ON.

AUTO
Allows PDF to determine the language.

DEFAULT
Highlights the data in a single color.

OTHER
Highlight the data as a pseudo-PL/I language. Limited CLIST support is
also provided by OTHER.

ASM Highlights the data as Assembler.

BOOK
Highlights the data as BookMaster.

C Highlights the data as C.

COBOL
Highlights the data as COBOL

DTL Highlights the data as Dialog Tag Language.

JCL Highlights the data as MVS Job Control Language.

PANEL
Highlights the data as ISPF Panel Language.

PASCAL
Highlights the data as Pascal.

Enhanced Edit Coloring

36 z/OS V1R2.0 ISPF Edit and Edit Macros

PLI Highlights the data as PL/I.

REXX Highlights the data as REXX.

SKEL Highlights the data as ISPF Skeleton Language.

RESET
Resets defaults (AUTO, ON, Find and Cursor on).

CURSOR
Toggles highlighting of the phrase that contains the cursor.

FIND Toggles highlighting FIND strings.

PAREN
Turns on parenthesis matching. When parenthesis matching is active, only
comments are specially colored. All other code is displayed in the default
color. Note that extra parenthesis highlighting is always active when
highlighting is active.

SEARCH
Finds the first unmatched END, ELSE, or). For C language programs this
command also finds the first unmatched }. The search for mismatches only
occurs for lines above the last displayed line, so you may need to scroll to
the bottom of the file before issuing the HI SEARCH command.

Note: The logic setting affects the search results. For example, if DOLOGIC
is on, only mismatched ENDs are found. If IFLOGIC is on, only
mismatched ELSEs are found.

DISABLED
Turns off all HILITE features and removes all action bars. This benefits
performance at the expense of function. Since DISABLED status is not
stored in the edit profile, you need to reenter this operand each time you
enter the editor.

The HILITE Dialog
The HILITE command with no operands displays a dialog that enables you to do
the following:
v Specify a specific language to be used for coloring or enable automatic language

detection.
v Assign colors for different language elements on a language-by-language basis

or for all languages at once.
v Enable or disable logic or parenthesis matching.
v Turn FIND coloring on or off and assign the color for FIND highlighting.
v Turn cursor coloring on or off and assign the color for cursor phrase

highlighting.
v Specify special symbols to be highlighted on a language-by-language basis.
v View keyword lists for each language.

Note: Keyword lists and default highlighted symbols for each language are
supplied by IBM. A facility that involves assembly and link editing of an
installation-modified keyword or symbol list does exist to add or remove
keywords. However, IBM does not supply facilities for adding additional
languages. The keyword and symbol lists, and directions for changing
them are in member ISRPXASM in the IBM-supplied ISPF sample library.

Enhanced Edit Coloring

Chapter 2. Controlling the Edit Environment 37

The functions of the HILITE dialog are provided by the your selection of
pull-down choices from action bars. Selection of pull-down choices results in
pop-up windows that enable you to supply the desired coloring information and
gain access to additional pull-down choices.

The HILITE panels are accompanied by descriptions of the available pull-down
choices:

You can reach this panel by issuing HILITE from an edit panel, or by selecting
Hilite... from the Edit pull-down.

HILITE Initial Panel Action Bar: The action bar choices on the HILITE Initial
panel are:

File
Restart application

Resets all settings on all panels back to the point that HILITE was
invoked.

Default All Settings
Resets all settings on this panel back to the point that HILITE was
invoked.

Save and Exit
Saves changes and exits application.

Cancel
Ends application and discards changes.

The LANGUAGES pulldown allows you to change the way that specific
supported languages are highlighted, including the symbols which are
highlighted and the colors that are used for the various language elements.

Note: ALL changes the colors for all of the languages at once.

Languages
All (changes all languages)...

Edit Color Settings
File Languages Colors Help

--

Language: 1 1. Automatic Coloring: 2 1. Do not color program
2. Assembler 2. Color program
3. BookMaster 3. Both IF and DO logic
4. C 4. DO logic only
5. COBOL 5. IF logic only
6. ISPF DTL
7. ISPF Panel Enter "/" to select option
8. ISPF Skeleton Parentheses matching
9. JCL Highlight FIND strings
10. Pascal Highlight cursor phrase
11. PL/I
12. REXX Note: Information from this panel is
13. Other saved in the edit profile.
14. Default

Command ===> __
F1=Help F2=Split F3=Exit F9=Swap F10=Actions F12=Cancel

Figure 9. HILITE Initial Screen (ISREP1)

Enhanced Edit Coloring

38 z/OS V1R2.0 ISPF Edit and Edit Macros

Assembler...
BookMaster...
C...
COBOL...
IDL...
ISPF DTL...
ISPF Panel...
ISPF Skeleton...
JCL...
Pascal...
PL/1...
REXX...
Other...

See “Language Support” on page 32 for a description of the Other...
choice.

Default...
Used when AUTO is specified, but no language can be determined.

Colors
Overtype Color...

Changes the color used for typed data. See Figure 10.
Find String Color...

Changes the color used to find strings. See Figure 11.
Cursor Phrase Color...

Changes the color of the phrase which contains the color. See
Figure 12.

Note: On a PC, the terminal emulator can affect the color. Some terminals
do not support features such as ″blink″; if this is selected with a
color, another color might display.

Help Immediately enters help panels, which offers these choices:
v Overview
v HILITE command
v Supported Languages
v Automatic Language Determination
v Additional Functions
v Supported Comment Types
v FIND and CURSOR highlighting
v Logic Highlighting
v C and IDL Language Notes
v Assembler Notes
v PL/I Notes
v BookMaster Notes
v Panel Notes
v Skeleton Notes
v Miscellaneous Notes.

Enhanced Edit Coloring

Chapter 2. Controlling the Edit Environment 39

Set Overtype Color Compilers Test Help
File Help ---

--------------------------------- 01.05 Columns 00001 00072
op of Data ******************************

Overtype
Color: _ 1. Red

2. Green
3. Blue
4. White
5. Yellow =======
6. Turquoise
7. Pink =======

Command ===> ___________________ -------
F1=Help F2=Split F3=Exit
F9=Swap

nds
000013
000014
000015
Command ===> hilite Scroll ===> CSR
F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
F8=Down F9=Swap F10=Actions F12=Cancel

Figure 10. Set Overtype Color panel (ISREP2)

Set Find String Color
File Help ------------------

-- lumns 00001 00072

Find String
Color: 4 1. Red Highlight: 2 1. Normal

2. Green 2. Reverse
3. Blue 3. Underscore
4. White 4. Blink
5. Yellow
6. Turquoise
7. Pink

Command ===> __
F1=Help F2=Split F3=Exit F9=Swap
F10=Actions F12=Cancel

000014
000015
Command ===> hilite Scroll ===> CSR
F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
F8=Down F9=Swap F10=Actions F12=Cancel

Figure 11. Set Find String Color panel (ISREP3)

Enhanced Edit Coloring

40 z/OS V1R2.0 ISPF Edit and Edit Macros

Set Overtype, Find String, Cursor Phrase Color Action Bars: These action bar
choices function as follows:

File The File pull-down offers these choices:
Reset Resets the settings on this panel to the values they had when the

panel first appeared.
Default

Sets the values to the IBM-supplied defaults.
Save and Exit

Exits this panel. Changes will be saved when the HILITE dialog
completes, unless Cancel is specified.

Cancel
Exits this panel and discards changes.

Help Immediately enters help panels for the HILITE command and dialog.

After selecting a specific language from the Languages pull-down on the HILITE
Initial panel (Figure 9 on page 38), Figure 13 appears:

Set Cursor Phrase Color
File Help ------------------

-- lumns 00001 00072

Cursor Phrase
Color: 4 1. Red Highlight: 2 1. Normal

2. Green 2. Reverse
3. Blue 3. Underscore
4. White 4. Blink
5. Yellow
6. Turquoise
7. Pink

Command ===> __
F1=Help F2=Split F3=Exit F9=Swap
F10=Actions F12=Cancel

000014
000015
Command ===> hilite Scroll ===> CSR
F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
F8=Down F9=Swap F10=Actions F12=Cancel

Figure 12. Set Cursor Phrase Color panel (ISREP4)

Enhanced Edit Coloring

Chapter 2. Controlling the Edit Environment 41

If the JCL language is selected, the Compiler Directives field is replaced by a DD *
and Data Lines field in the pop-up window.

When a new color is typed in, the input field is shown in that color when you
press Enter.

Note: If a field is not applicable to a language, the field is supplied with a *n/a*.

Edit Color Settings Action Bar: The Edit Color Settings action bar choices
function as follows:

File The File pull-down offers these choices:
Restart ’language’

Resets colors and symbols to the settings they had upon entry to
this panel.

Defaults
Resets colors and symbols to default values.

Save and Exit
Exits this panel. Changes will be saved when the HILITE dialog
completes, unless Cancel is specified.

Cancel
Exits this panel and discards changes.

View The View pull-down choice is:
View Keywords

Displays a list of keywords for a particular language. See Figure 14
for an example of a Language Keyword list.

Help Immediately enters help panels.

If no keywords exist for a given language choice, a message is displayed
instead of a Language Keyword list.

Edit Color Settings
File View Help

- --- --------
Language Element Color Specification

L
Language: PLI
Language Element Color Highlight
----------------------- ------ ---------

Default GREEN NORMAL
Comments TURQ NORMAL
Keywords RED NORMAL
Quoted Strings WHITE NORMAL
Compiler Directives ... BLUE NORMAL
Special Characters YELLOW NORMAL

Special Characters to e.
Highlight =-+*/<>&^]:

Command ===> __
C F1=Help F2=Split F3=Exit F9=Swap F10=Actions

F12=Cancel cel

Figure 13. HILITE Specific Language Screens (ISREPC)

Enhanced Edit Coloring

42 z/OS V1R2.0 ISPF Edit and Edit Macros

Language Keyword List Action Bar: The Language Keyword List action bar
choices function as follows:

File The File pull-down choice is:
Cancel

Exit this panel. (No changes are possible on this panel.)

Help Immediately enters help panels.

Highlighting Status and the Edit Profile
Colors are assigned to each character in the data area when the data appears. As
you type in characters, they appear in the ’overtype’ color. When the Enter key or
a F key is pressed, the file is scanned again and the new characters are displayed
in the appropriate colors for the type of data being edited. The actual color
definitions and symbol sets for each language affect the entire ISPF session.
However, only the language, coloring type (ON/OFF status), and logic type are
saved in the edit profile.

A new edit profile line, as shown in Figure 15, has been added which shows the
status of edit highlighting. If edit highlighting is not available, the profile line is
not shown. If highlighting is available, and you explicitly set the language, then
the language appears in RED on color terminals.

The information shown on the PROFILE command is saved as part of the edit
profile.

Edit Color Settings
Edit Color Settings

- File Help
--

L Language Keyword List

Language: PLI Number of keywords: 368
(Includes preprocessor keywords) More: +

ABS EXTERNAL PLITDLI
ACOS FB POINTER
ADD FBS POINTERADD
ADDBUFF FETCH POINTERVALUE
ADDR FILE POLY
ALIGNED FINISH POS
ALL FIXED POSITION
ALLOC FIXEDOVERFLOW PREC
ALLOCATE FLOAT PRECISION
ALLOCATION FLOOR PRINT
ALLOCN FOFL PRIORITY
ANY FORMAT PROC
Command ===> __

C F1=Help F2=Split F3=Exit F7=Backward F8=Forward
F9=Swap F10=Actions F12=Cancel

Figure 14. HILITE Language Keyword List (ISREPK)

....HILITE PLI LOGIC PAREN CURSOR FIND..................................
or
....HILITE PLI PAREN FIND...
or
....HILITE OFF..

Figure 15. Edit Profile Lines with HILITE

Enhanced Edit Coloring

Chapter 2. Controlling the Edit Environment 43

Edit Recovery
Edit recovery is the PDF component’s method of helping you recover data that
could otherwise be lost. For example, you would use edit recovery to re-establish
the edit session at the point of failure after a power outage or system failure.

You can turn on edit recovery mode by doing either of the following:
v Entering the RECOVERY primary command:

Command ===> RECOVERY ON

v Running an edit macro that contains the RECOVERY macro command:
ISREDIT RECOVERY ON

If recovery mode is on when a system crash occurs, automatic recovery takes place
the next time you attempt to use edit. Recovery mode is remembered in your edit
profile.

Note: Turning recovery mode on causes the data to be written to a temporary
backup file. This is independent of whether changes have been made to the
data.

When you begin an edit session, if there is data to recover, the the Edit Recovery
panel appears, shown in Figure 16.

Note: Refer to ISPF User’s Guide for information about the Data Set Password
field.

If you continue with, defer, or cancel recovery and you have other data to be
recovered, the Edit Recovery panel is displayed again for the next data set. You can
control the number of data sets to be recovered with the edit recovery table, a
system data set that contains entries for each level of nested editing sessions that
can be recovered. For information on changing edit recovery operands, refer to
ISPF Planning and Customizing

Edit - Recovery

* EDIT AUTOMATIC RECOVERY *

The following data set was being edited or viewed when a system failure
or task abend occurred:

Data set. :

Instructions:
Press ENTER key to continue editing or viewing the data set, or
Enter END command to return to the previous panel, or
Enter DEFER command to defer recovery of the specified data set, or
Enter CANCEL command to cancel recovery of the data set.

To continue editing or viewing a password protected data set, specify:

Data Set Password. . .

Command ===> ___
F1=Help F2=Split F3=Exit F9=Swap F12=Cancel

Figure 16. Edit Recovery Panel (ISREDM02)

Edit Recovery

44 z/OS V1R2.0 ISPF Edit and Edit Macros

Note: You cannot recursively edit data while you are in an edit session which is
the result of an edit recovery.

Attention:

If the data set to be recovered was edited by another user before you continue
with edit recovery, the changes made by the other user are lost if you save the
data.

If you press Enter to continue editing the data set, the editor runs a recovery
macro if you had previously specified one by using the RMACRO primary or
macro command. See “Recovery Macros” on page 115 and the descriptions of the
RMACRO primary and macro commands for more information.

In spite of edit recovery’s benefit in recovering data, there are times when you
might not want to use it. You might want to turn edit recovery off in the following
situations:
v Operating with recovery mode off eliminates the I/O operations that maintain

the recovery data and can therefore result in improved response time.
v Besides recording actual data changes, recovery mode records temporary

changes, such as excluding lines and defining labels. These temporary changes
are recorded to allow UNDO to undo other edit interactions besides those that
change data. Therefore, when edit recovery is on, the recording of both data and
temporary changes affects the amount of DASD space that is used.

You can turn off edit recovery mode by doing either of the following:
v Entering the RECOVERY primary command:

Command ===> RECOVERY OFF

v Running an edit macro that contains the RECOVERY macro command:
ISREDIT RECOVERY OFF

See Chapter 10. Edit Primary Commands for details on using RECOVERY.

Edit Recovery

Chapter 2. Controlling the Edit Environment 45

Edit Recovery

46 z/OS V1R2.0 ISPF Edit and Edit Macros

Chapter 3. Managing Data

This chapter gets you started using some of the basic line and primary commands
to manipulate data.

The basic functions of the ISPF editor are similar to those of a word processor. You
can create, copy, move, search, and replace data, as well as perform several other
word processing functions by using the line and primary commands described in
this chapter.

Creating and Replacing Data
Use the CREATE and REPLACE primary commands to specify a member to be
written from the data being edited. CREATE adds a new member to a partitioned
data set or a new sequential data set. REPLACE rewrites a member or sequential
data set. The process of creating and replacing data is very similar. However,
remember that when you replace data, the original data is deleted and replaced
with the new data.

There are two ways you can use CREATE or REPLACE:
1. You can type either CREATE or REPLACE on the Command line, followed by the

name of a member or the name of a data set and member, to be created or
replaced. You can add line labels that show the lines to be copied. If you omit
the labels, you can use the C (copy) or M (move) line commands to specify
which lines are to be copied or moved. Then press Enter. See “CREATE—Create
Data” on page 227 and “REPLACE—Replace Data” on page 276 for the
complete syntax of the commands.

2. If you omit the member name or data set name and member, and just type
CREATE or REPLACE and specify the lines to be used to create or replace the
member, the editor displays a panel requesting the name of the member or data
set you want created or replaced.

If you try to create or replace data that has inconsistent attributes, the Edit -
Confirm Create Edit - Confirm Replace panel that warns you of the inconsistency
and gives you an opportunity to cancel the create and replace commands.
Figure 17 shows an Edit - Confirm Replace panel that was displayed for a user
who tried to replace a sequential data set with a member of a partitioned data set.

© Copyright IBM Corp. 1984, 2001 47

Copying and Moving Data
While you are editing, you can copy or move another data set or member into the
current data by using the COPY or MOVE primary commands. The process of
moving and copying data is very similar. However, remember that when you
move data, the original information no longer exists in the member or data set that
it is being moved from.

When moving or copying large data sets, you can reduce the processing time
significantly by specifying NUMBER OFF before the operation and NUMBER ON
afterwards.

This topic explains how to use the COPY and MOVE primary commands. See
“C—Copy Lines” on page 168 and “M—Move Lines” on page 179 for information
about the line commands.

The two ways to perform a move or copy operation are:
v You can type either COPY or MOVE, followed by name and either AFTER label or

BEFORE label, where name is the name of the member or data set to be copied or
moved and label is a label that is defined in the line command area. The label
can be defined by PDF, such as .ZFIRST for the first line of data, or it can be one
that you have defined. If you omit the label, you can use the A (after) or B
(before) line command to specify where the information is to go. When you
press Enter, the member is copied or moved. See “COPY—Copy Data” on
page 223 and “MOVE—Move Data” on page 260 for the complete syntax of the
commands.

v If you omit the member name or data set name, and just type the command and
the destination of the operation (using either the AFTER label or BEFORE label
operand or the A or B line command), the editor displays a panel on which you
can specify the name of the member to be copied or moved. The only difference
between the Edit Move and Edit Copy panels is that with Copy, you can specify
the number of lines you want copied.

EDIT - Confirm Replace

Data set attributes are inconsistent. Truncation may result in
the right-most portions of some records if replace is performed.

"Target" data set attributes:
Data set name. : USERID.PRIVATE.STUFF
Record format. : VARIABLE
Record length. : 133

"Current" data set attributes:
Data set name. : USERID.PRIVATE.EXEC(PGM1)
Record format. : VARIABLE
Record length. : 251

Press ENTER key to allow replace with truncation.
Enter END command to cancel replace.

Command ===> ___
F1=Help F2=Split F3=Exit F9=Swap F12=Cancel

Figure 17. Confirm Replace Panel (ISRERPL2)

Copying and Moving Data

48 z/OS V1R2.0 ISPF Edit and Edit Macros

Shifting Data
When you edit data, the editor automatically shifts characters on a line to the left
or right to accommodate insertions or deletions. This shifting can be either implicit
or explicit. Implicit shifts occur when the CHANGE command string-2 length is
different from the string-1 length. Explicit shifts occur when you use the following
commands:
v Line commands

(Column Shift Left
) Column Shift Right
< Data Shift Left
> Data Shift Right

v Macro commands
Shift (Column Shift Left
Shift) Column Shift Right
Shift < Data Shift Left
Shift > Data Shift Right

See the descriptions of these commands for the syntax and examples of usage.

Two columns is the default for shift operations. When shifting a block of lines
more or less than the default, enter the amount on the first or last line of the block.
If you enter it in both places, the line shifts only if:
v Both amounts are the same, or
v The amounts differ, but one is the default (2). Here, the lines shift according to

the non-default amount.

If the shift amounts are different and neither amount is the default, an error
message appears and the shift is not performed.

Shifting occurs within column boundaries. The default boundaries are typically the
first and last columns in which you can type source code for the particular
programming language. See “Edit Boundaries” on page 26 for a discussion of
default boundaries and the procedures for changing them.

Column Shift
The simplest kind of shift is a column shift. Column shifting moves all characters
within the bounds without altering their relative spacing. Characters shifted past
the bounds are deleted. That is, blanks are inserted at the bound from which the
characters are being shifted, and the characters are deleted at the opposite bound.
So, this shift is called a destructive shift because information shifts within column
boundaries without regard to its contents, and can result in the loss of data with
no error being noted.

If the UNDO mode was on before you entered the shift command, you can recover
by using the UNDO command. Otherwise, you can use CANCEL.

Column Shifting in Lines that Contain DBCS Strings
The following rules apply:
v If half of a DBCS character is in the shift, it is excluded from the operation; the

shift count is changed automatically.
v If a column shift causes a DBCS string and an EBCDIC string to be connected, a

shift-out or shift-in character, as appropriate, is inserted between the strings. The
shift count is changed automatically.

Shifting Data

Chapter 3. Managing Data 49

v If left, right, or both boundaries are set, a DBCS character can cross the
boundary. The DBCS character that crosses the boundary is excluded from the
operation, and the shift count is changed automatically.

v If a request to shift an odd number of columns causes an odd-length DBCS
string, the requested shift number is discarded. The shift is processed up to the
next field boundary within the boundary, if any. If no field boundary is found,
the line number is replaced with the following intensified warning message:
==ERR>. Also, the short message for an incomplete data shifting error is
displayed.

If you are using the column shifting or data shifting line command while editing a
formatted data set, you should note the following points:
v The current boundaries are automatically changed during command processing,

and are reset to the original values after processing is complete. Changes are as
follows:
– If the left boundary falls on the second byte of a DBCS character in a DBCS

field, the boundary is shifted to the left by 1 byte.
– If the right boundary does not fall on the same field as the left boundary, it is

set to point to the last byte of the field that contains the left boundary. If it
falls on the same DBCS field as the left boundary, and it also falls on the first
byte of a DBCS character, the right boundary is shifted to the right by 1 byte.

v If you use the data shift or column shift line command to shift a DBCS field and
you specify an odd-length shift amount, the shift amount is decreased by one to
preserve DBCS data integrity.

v If a shift cannot be completed, it is partially done and the line number is
replaced by the following intensified warning message: ==ERR>. Remove the
message by issuing the RESET primary command, or type over the message or
data on that line.

v If a request to shift an odd number of bytes causes an odd-length DBCS string,
the shift volume is decreased by one and the operation is performed. The line
number is replaced with the following intensified warning message: ==ERR>.

Data Shift
Data shifting attempts to shift the body of a program statement without shifting
the label or comments, and prevents loss of data. This shift is non-destructive
because it stops before it shifts a non-blank character past the bound. This shift is
explicitly done with the < and > line commands, and the SHIFT < and SHIFT >
macro commands. The CHANGE command can cause an implicit shift of the same
nature.

For data shift left attempts that exceed the current BOUNDS setting, text stops at
the left bound and PDF marks the shifted lines with ==ERR> flags. If an error occurs
in an excluded line, you can find the error with LOCATE, and remove the error
flag by using RESET.

Data shifts are designed to work with typical program sources. In doing so, it
makes certain general assumptions about the format of the source code. For
instance, the editor assumes:
v Anything beginning at the left bound is a label and should not be shifted.
v If there are two or more consecutive blanks, one can be added or deleted.
v Blanks within quotes (' or ") are to be treated as non-blanks.
v Source statements appear on the left followed by comments on the right.

Shifting Data

50 z/OS V1R2.0 ISPF Edit and Edit Macros

v Single blanks are used between source code and comment words. Therefore, the
only strings of multiple blanks appear between the source code and the
comment, and between the comment and its ending delimiter (if there is one). In
the following example, LABEL and */ are at the left and right bounds,
respectively:
LABEL: DO I=1 TO 5; /* The comment... */

A=A+B(I); /* The comment... */
END;

Keeping the previous assumptions in mind, the editor attempts to move only the
source code statement when shifting data. The label and comments are left
unchanged. However, if necessary, it shifts the comment also.

Although the editor always uses these assumptions, data shifting is not
language-sensitive. It only makes generalities about syntax and individual code
entry style.

Finding, Seeking, Changing, and Excluding Data
FIND, SEEK, CHANGE, and EXCLUDE allow you to find a specified search string,
change one search string to another, or exclude a line containing a specified search
string. These commands provide powerful editing functions because they operate
on a complete data set rather than on a single line.

The characteristics of each command follow:

FIND Causes all lines that it finds to be displayed, and moves the cursor
(scrolling if necessary) to the first occurrence of the search string.

SEEK A special form of FIND that can only be used in an edit macro. It is
different from FIND in that it does not change the exclude status of the
lines found.

CHANGE
Causes the same effect as FIND, but it also has a second string operand
(string-2). During a search, whenever string-1 is found, the editor replaces
that string with string-2. Data to the right is shifted, if necessary.

EXCLUDE
Causes lines that match the search not to be displayed. These lines remain
in the data, however. Unlike FIND and CHANGE, it does not require a
search string if you use the ALL operand. EXCLUDE ALL is often used
with FIND and CHANGE because they cause excluded lines to be
redisplayed. Use RESET to cause all lines to be redisplayed.

The scrolling and positioning of the string can be controlled using the Edit_Settings
action bar choice or the EDITSET primary command when editing the data. See
“EDITSET—Display the Editor Settings Dialog” on page 237 for more information.

The syntax of each command is a variation of that listed below. See the command
descriptions in Chapter 10. Edit Primary Commands and Chapter 11. Edit Macro
Commands and Assignment Statements for the exact syntax.
string [range] [NEXT] [CHARS] [X] [col-1] [col-2]]

[ALL] [PREFIX] [NX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

Shifting Data

Chapter 3. Managing Data 51

Specifying the Search String
The primary control for any search is the search string because it represents the
value for which you are looking. Two operands, string-1 and string-2, are required
for the CHANGE command to specify the new value of the string once it is found.
The rules for specifying string-1 and string-2 are the same, except that if you type a
single asterisk for string-2, the previous value is used again.

You can define string-1 and string-2 to be EBCDIC, DBCS, and mixed strings in any
combination. If you delimit a DBCS search string (string-1) with SO and SI
characters, the SO and SI characters are not used as part of the string. If you
specify a mixed string that contains no EBCDIC characters, the string is treated as
a DBCS string; that is, the SO and SI characters are not used as part of the string.

The editor allows you to specify the following kinds of strings:

Simple string
Any series of characters not starting or ending with a quote (' or ") and
not containing any embedded blanks, commas, or asterisks.

Delimited string
Any string enclosed (delimited) by either single quotes (’) or double
quotes (″). The beginning and ending delimiters must be the same
character.

Hexadecimal string
Any delimited string of valid hexadecimal characters, preceded or followed
by the character X, such as X'C27B'.

Character string
Any delimited string of characters, preceded or followed by the character
C, such as C'conditions for'. See “Character Strings” on page 53 for more
information.

Picture string
Any delimited string of picture characters, preceded or followed by the
character P, such as P'.'. See “Picture Strings (String-1)” on page 53 and
“Picture Strings (String-2)” on page 54 for more information.

Note: The Edit FIND, CHANGE, and EXCLUDE commands do not work with a
search argument that contains the command delimiter, even if string
delimiters are used. You can specify a hexadecimal search string or use ISPF
Option 0.1 to change the command delimiter to a different character.

Simple and Delimited Strings
If the string is a simple or delimited string, the characters are treated as being both
upper and lowercase even if caps mode is off. For example, this command:
find ALL 'CONDITION NO. 1'

successfully finds the following:
CONDITION NO. 1
Condition No. 1
condition no. 1
coNDitION nO. 1

Also, all of the following commands have the same effect:
FIND 'Edit Commands'
FIND 'EDIT COMMANDS'
FIND 'edit commands'

Finding, Seeking, Changing, and Excluding Data

52 z/OS V1R2.0 ISPF Edit and Edit Macros

You must use delimiters if a string contains imbedded blanks or commas, or if a
string is the same as a command or keyword. You delimit strings with quotes,
either ' or ". For example, to change the next occurrence of every one to all, type:
Command ===> CHANGE 'every one' 'all'

Note: When using a DBCS terminal, if you specify a text string that contains any
SO and SI characters, the string is considered a character string.

Character Strings
Use a character string in a FIND, CHANGE, or EXCLUDE command if you want
the search to be satisfied by an exact character-by-character match. Lowercase
alphabetic characters match only with lowercase alphabetic characters, and
uppercase alphabetic characters match only with uppercase.

For example, FIND C'XYZ' finds the characters XYZ only, not xyz.

Picture Strings (String-1)
A picture string in a FIND, CHANGE, or EXCLUDE command allows you to
search for a particular kind of character without regard for the specific character
involved. You can use special characters within the picture string to represent the
kind of character to be found, as follows:

String Meaning
P'=' Any character
P'¬' Any character that is not a blank
P'.' Any character that cannot be displayed
P'#' Any numeric character, 0-9
P'-' Any non-numeric character
P'@' Any alphabetic character, uppercase or lowercase
P'<' Any lowercase alphabetic character
P'>' Any uppercase alphabetic character
P'$' Any special character, neither alphabetic nor numeric.

If you are using an APL or TEXT keyboard, you can use the following additional
characters in a picture string:

P’

’ Any APL-specific or TEXT-specific character
P'_' Any underscored non-blank character.

A picture string can include alphanumeric characters, which represent themselves,
mixed with other characters. If the character does not have a special meaning (such
as @ standing for any alphabetic), the character is treated as itself.

When using a DBCS terminal, you cannot specify a DBCS field as the subject of a
picture string for the FIND operation.

Picture String Examples:

v To find a string of 3 numeric characters:
FIND P'###'

v To find any 2 characters that are not blanks but are separated by a blank:
FIND P'¬ ¬'

v To find any character that cannot be displayed:

Finding, Seeking, Changing, and Excluding Data

Chapter 3. Managing Data 53

FIND P'.'

v To find a blank followed by a numeric character:
FIND P' #'

v To find a numeric character followed by AB:
FIND P'#AB'

v To find the next character in column 72 that is not a blank:
FIND P'¬' 72

v To change any characters in columns 73 through 80 to blanks:
CHANGE ALL P'=' ' ' 73 80

v To find the next line with a blank in column 1 and a character in column 2 that
is not a blank:
FIND P' ¬' 1

When you use the special characters = or . and a character that cannot be
displayed is found, that character’s hexadecimal representation is used in the
confirmation message that appears in the upper-right corner of the panel. For
example:
FIND P'..'

could result in the message CHARS X'0275' FOUND.

Picture Strings (String-2)
In a CHANGE command, string-2 can be a picture string with the following rules
and restrictions:
v The length of string-2 must be the same as the length of string-1.
v The only valid special characters are =, >, and <.

String Meaning
P'=' Equal to the corresponding character in string-1
P'>' Converts the corresponding character in string-1 to uppercase
P'<' Converts the corresponding character in string-1 to lowercase.

Picture String Examples:

v To change an alphabetic, alphabetic, numeric, numeric string so that the
alphabetic characters become uppercase characters and the numeric characters
are unchanged:
CHG P'@@##' P'>>=='

v To change all characters to uppercase:
CHG ALL P'<' P'>'

Effect of CHANGE Command on Column-Dependent Data
Column-dependent data is groups of non-blank source data separated by two or
more blanks, such as a table. When you use CHANGE to change
column-dependent data, ISPF attempts to maintain positional relationships. For
instance, if you change a long word to a short word, the editor pads the short
word with blanks. This padding maintains the column position of any data to the
right of the change by preventing it from shifting left.

When only one blank separates words, as in most text data, padding does not
occur. Changing a long word to a short word causes data to the right of the change
to shift left.

Finding, Seeking, Changing, and Excluding Data

54 z/OS V1R2.0 ISPF Edit and Edit Macros

Using the CHANGE Command With EBCDIC and DBCS Data
If you are editing a data set that contains both EBCDIC and DBCS data, you
should note the following rules about CHANGE strings:
v The SO and SI characters that delimit the CHANGE string are used as part of

the string only if necessary. If you specify replacement of an EBCDIC string with
a DBCS string, they are used. If you specify replacement of a DBCS string with
another DBCS string, they are not used.

v If you specify in a CHANGE string that an SO or SI character be changed to
another character, the result is unpredictable.

v If you specify a CHANGE string that causes a field length of zero and the
boundary falls between the SO and SI characters, the SO/SI or SI/SO character
strings that are next to each other are replaced with a DBCS blank. If the
boundary does not fall between the SO and SI characters, the SO/SI or SI/SO
characters that are next to each other are removed.

v If the lengths of the two strings specified in CHANGE are different, the
following occurs:
– If string-1 is shorter than string-2, the data to the right of string-1 is shifted to

the left up to some breakpoint. Breakpoints include the border between an
EBCDIC field and a DBCS field, a double or single blank, or the right
boundary set by a BOUNDS command.

– If string-1 is longer than string-2, blanks in the record to the right of string-1
are used to make room. When blanks in a DBCS field are used, they are used
in units of 2 bytes.

v If a DBCS field crosses the right boundary, CHANGE can cause an odd-length
DBCS field. If this happens, the right boundary is ignored and the operation
takes place.

Controlling the Search
After you specify the search string, you can then specify how much of the data
you want to search, as well as the starting point and direction of the operation.

Extent of the Search
You can limit the lines to be searched by first assigning a label to the first and last
lines to be searched, and then specifying the labels on the command (range
operand).

If you want to limit the search to a single line, assign a label to it, and then specify
the label twice to show the first and last line of the range. For more information
about labels, see “Labels and Line Ranges” on page 63.

Starting Point and Direction of the Search
To control the starting point and direction of the search, use one of the following
operands:

NEXT Starts at the first position after the current cursor location and searches
ahead to find the next occurrence of string-1. NEXT is the default.

ALL Starts at the top of the data and searches ahead to find all occurrences of
string-1. The long verification message, which PDF displays when you
enter the HELP command in response to the short verification message,
shows the number of occurrences found. If you use this operand with
CHANGE, the lines changed are marked with ==CHG> flags, and lines that
cannot be changed are marked with ==ERR> flags. The status of these lines
can be used by LOCATE and changed by RESET.

Finding, Seeking, Changing, and Excluding Data

Chapter 3. Managing Data 55

FIRST Starts at the top of the data and searches ahead to find the first occurrence
of string-1.

LAST Starts at the bottom of the data and searches backward to find the last
occurrence of string-1.

PREV Starts at the current cursor location and searches backward to find the
previous occurrence of string-1.

If you specify NEXT, ALL, or FIRST, the direction of the search is forward. When
you press the assigned function keys, the RFIND or RCHANGE commands find or
change the next occurrence of the designated string. If you specify LAST or PREV,
the direction of the search is backward. When you specify those operands, the
editor finds or changes the previous occurrence of the string.

The search proceeds until the editor finds one or all occurrences of string-1, or the
end of data.

If you omit the ALL operand on the CHANGE command, the editor searches only
for the first occurrence of string-1 after the current cursor location. If the cursor is
not in the data area of the panel, the search starts at the beginning of the first line
currently displayed. Scrolling is performed, if necessary, to bring the string into
view.

After you make the change, the cursor is positioned at the end of the changed
string; a verification message is displayed in the upper right-hand corner of the
panel.

Depending on the direction of the search, if the string is not found between the
current cursor location and the end or beginning of data, a message is displayed
and an audible alarm, if installed, is sounded.

If string-1 is not found, one of the following actions takes place:
v A NO string-1 FOUND message is displayed in the upper right-hand corner of the

panel.
v If CHANGE or EXCLUDE was repeated using RFIND or RCHANGE, either a

BOTTOM OF DATA REACHED or a TOP OF DATA REACHED message appears, depending
on the direction of the search. When these messages appear, you can enter
RFIND or RCHANGE again to continue the search by wrapping to the top or
bottom of the data. If string-1 is still not found, a NO string-1 FOUND message is
displayed.

Qualifying the Search String
You can specify additional characteristics of string-1 by using the operands PREFIX,
SUFFIX, CHARS, and WORD. You can abbreviate PREFIX, SUFFIX, and CHARS to
PRE, SUF, and CHAR, respectively.

CHARS
Locates string-1 anywhere the characters match. This is the default.

PREFIX
Locates string-1 at the beginning of a word.

SUFFIX
Locates string-1 at the end of a word.

Finding, Seeking, Changing, and Excluding Data

56 z/OS V1R2.0 ISPF Edit and Edit Macros

WORD
String-1 is delimited on both sides by blanks or other non-alphanumeric
characters.

In the following example, the editor would find the highlighted strings only:
CHARS 'DO' - DO DONT ADO ADOPT 'DO' (DONT)

PREFIX 'DO' - DO DONT ADO ADOPT 'DO' (DONT)

SUFFIX 'DO' - DO DONT ADO ADOPT 'DO' (DONT)

WORD 'DO' - DO DONT ADO ADOPT 'DO' (DONT)

If you do not specify an operand, the default is CHARS.

Column Limitations
The col-1 and col-2 operands allow you to search only a portion of each line, rather
than the entire line. These operands, which are numbers separated by a comma or
by at least one blank, show the starting and ending columns for the search. The
following rules apply:
v If you specify neither col-1 nor col-2, the search continues across all columns

within the current boundary columns.
v If you specify col-1, the editor finds the string only if the string starts in the

specified column.
v If you specify both col-1 and col-2, the editor finds the string only if it is entirely

within the specified columns.

Split Screen Limitations
When string-1 is not found within the data that is displayed on the screen, the
search operation scrolls the data so that string-1 appears on the second displayed
line of the data area. If only one line of data is showing in split screen mode, the
data on the second line (thus, string-1) cannot be seen and the cursor is placed on
the command line.

Excluded Line Limitations
You can limit the lines to be searched by first using the X or NX operands:
X Scan only lines that are excluded from the display.
NX Scan only lines that are not excluded from the display.

If you omit these operands, both excluded and nonexcluded lines are searched.
When you issue a FIND or CHANGE command that includes searching excluded
lines, all lines found are displayed. EXCLUDE can also find labels assigned to
excluded lines.

Using the X (Exclude) Line Command with FIND and CHANGE
You can use the X (exclude) line command with FIND and CHANGE to display
only those lines containing the search string or those lines that have been changed.
For example, if your data set contains 99,999 lines or less, type X99999 in the line
command area of the first line to exclude all of the lines from the display. Then
enter a CHANGE command, such as:
COMMAND ===> CHANGE ALL XYZ ABC

All lines containing search string XYZ are redisplayed with XYZ changed to ABC and
with the cursor at the end of the first string changed.

Finding, Seeking, Changing, and Excluding Data

Chapter 3. Managing Data 57

Similarly, you can enter a FIND command:
Command ===> FIND ALL XYZ

Here, all lines containing the search string XYZ are redisplayed with the cursor at
the beginning of the first string found.

Repeating the FIND, CHANGE, and EXCLUDE Commands
The easiest way to repeat FIND, CHANGE, and EXCLUDE without retyping them
is to assign those commands to function keys. The defaults are:
F5/17 RFIND
F6/18 RCHANGE

The search begins at the cursor. If the cursor has not moved since the last FIND,
CHANGE, or EXCLUDE command, the search continues from the string that was
just found. Instead of retyping string-1, you can type an asterisk to specify that you
want to use the last search string. If you decide to type RCHANGE or RFIND on the
Command line instead of using a function key, position the cursor at the desired
starting location before pressing Enter.

All three commands share the same string-1. Therefore:
Command ===> FIND ABC

followed by:
Command ===> CHANGE * XYZ

first shows you where ABC is, and then replaces it with XYZ. However, you can
do this more easily by typing:
Command ===> CHANGE ABC XYZ

Then press F5/17 to repeat FIND. The editor finds the next occurrence of ABC.
You can either press F5/17 to find the next ABC, or F6/18 to change it. Continue
to press F5/17 to find remaining occurrences of the string.

The previous value of a search string, specified by an asterisk or by use of RFIND
or RCHANGE, is retained until you end your editing session.

Examples

FIND Command Example
To find all occurrences of “mimic” in a member such as the one shown in
Figure 18, type find all mimic on the Command line.

Finding, Seeking, Changing, and Excluding Data

58 z/OS V1R2.0 ISPF Edit and Edit Macros

After you press Enter, the editor searches for the string starting at the top of the
data, places the cursor at the beginning of the first occurrence, and displays the
number of occurrences as shown in Figure 19.

CHANGE Command Example
To change “mimic” to “willy” type c all mimic willy on the Command line as
shown in Figure 20.

Figure 18. Before FIND Command (ISREDDE2)

Figure 19. After FIND Command

Finding, Seeking, Changing, and Excluding Data

Chapter 3. Managing Data 59

The editor changes all occurrences of the string starting at the top of the data and
inserts a ==CHG> flag next to each changed line, as shown in Figure 21.

EXCLUDE Command Example
When you enter an EXCLUDE command like ex /* all on the Command line
(Figure 22), the editor excludes all lines with that string starting at the top of the
data (Figure 23).

Figure 20. Before CHANGE Command

Figure 21. After CHANGE Command

Finding, Seeking, Changing, and Excluding Data

60 z/OS V1R2.0 ISPF Edit and Edit Macros

Excluding Lines
You can exclude lines from a data set using the X (exclude) line command as well
as the EXCLUDE primary command.

When you are editing a program that exceeds the screen size, it is often difficult to
determine whether the control structure and indentation levels are correct.

Figure 22. Before EXCLUDE Command

Figure 23. After EXCLUDE Command

Finding, Seeking, Changing, and Excluding Data

Chapter 3. Managing Data 61

Excluding lines allows you to remove one line or a block of lines from the display
so that you can see the general control structure. The lines are excluded from the
display, but are not deleted from the data. Excluded lines are treated as valid data
lines.

The X line command can have the syntax:
X[n]

or
XX

The first form allows you to exclude one line (X) or any number of lines (Xn).

The second form allows you to exclude a block by typing XX on the first and last
lines of the block of lines that you want to exclude. The first and last lines do not
need to be on the same page; after typing the first XX you can scroll to the second
XX.

You can enter any line command that usually operates on a single line in the line
command area of the excluded lines message. For example, if you enter the D
(delete) line command, the complete block of excluded lines is deleted.

Redisplaying Excluded Lines
To display all excluded lines, enter the RESET EXCLUDED primary command.
Alternatively, you can display one or more excluded lines again by entering the S
(show), F (first), or L (last) line commands, typing over the dashes in the line
command area. If these commands are typed outside the dashes of the command
line area, no action is taken.

You can add a number following any of these line commands to cause more than
one line to appear again:
S[n]

F[n]

L[n]

FIND and CHANGE also cause any excluded lines that meet the search criteria to
appear again.

The S line command causes the editor to scan block of excluded lines, and one or
more lines is selected to be appear again. The selected lines are those with the
leftmost indentation levels; that is, the lines that contain the fewest leading blanks.
If you type S3, for example, the three lines with the leftmost indentation level are
displayed again. If more than three lines exist at this indentation level, only the
first three are displayed.

Note: If you enter an S line command to display all but one line of an excluded
block, then that line is also displayed. This could result in more lines being
displayed than the number you requested. For example, if five lines are
excluded in a block, an S4 command causes all five lines to be displayed.

Redisplaying a Range of Lines
The FLIP command lets you reverse the exclude status of a specified group of lines
in a file or of all the lines in the file. This is useful when you have used the 'X
ALL;FIND ALL xyz' command to find lines containing a string (xyz) and want to

Excluding Lines

62 z/OS V1R2.0 ISPF Edit and Edit Macros

see the lines which do not contain the string. You can also use FLIP to show
excluded note, message, and information lines.

You can enter one or two labels to specify the range of lines whose include status
you want to reverse. If no labels are specified, the exclude status of all of the lines
is reversed.

To reverse the exclude status of all the lines in a file, use the following syntax:
Command ===> flip

To reverse the exclude status of specified lines, use the following syntax:
Command ===> flip .a .b

The lines between labels .a and .b are redisplayed.

Labels and Line Ranges
A label is an alphabetic character string used to name lines or strings of data for
easy reference. Because labels remain with the lines to which they are assigned,
they are especially useful in keeping track of lines whose numbers might change.
Most labels are assigned in macros, but certain labels are automatically assigned by
the ISPF editor.

You can assign a label to a line by typing the label over the line number on the left
side of the panel. The label is displayed in place of the number whenever the line
is being displayed. If you then move the line, the label moves with it. You cannot
type a label on a non-data line or on the line that is displayed to show one or
more lines is excluded.

A label must begin with a period, and be followed by no more than 5 alphabetic
characters (8 for edit macros), the first of which cannot be a Z. Labels beginning
with Z are reserved for use by the editor. No special or numeric characters are
allowed.

To eliminate a single label, blank it out. To eliminate all labels, use the RESET
LABEL command.

An edit macro can assign labels to lines that the macro references frequently. See
“Labels in Edit Macros” on page 110 for details.

Editor-Assigned Labels
The editor automatically assigns special labels that begin with the letter Z. Only
the editor can assign a special label.

These built-in labels are:

.ZCSR The data line on which the cursor is currently positioned.

.ZFIRST
The first data line (same as relative line number 1). Can be abbreviated .ZF.

.ZLAST
The last data line. Can be abbreviated .ZL.

Unlike other labels, .ZCSR, .ZFIRST, and .ZLAST do not stay with the same line.
Label .ZCSR stays with the cursor, and labels .ZFIRST and .ZLAST remain with the
current first and last lines.

Excluding Lines

Chapter 3. Managing Data 63

Note: Labels that are five characters long and begin with the letter ’O’ have special
meaning to the HILITE feature of the ISPF editor. When a five-character
label starting with O, such as .OAAAA, is shown on the screen, the
language highlighting features are disabled and the lines with these special
labels are displayed in blue. This feature is used by the COMPARE
command.

Specifying a Range
Labels allow you to specify a line or a range of lines on a primary command. You
can specify two labels to define a range of lines to be processed on the following
commands:

CHANGE FIND RESET
DELETE LOCATE SORT
EXCLUDE REPLACE SUBMIT

The range operand is always optional. If you do not specify a range, it defaults to
.ZFIRST and .ZLAST. For example, the command:
CHANGE ALL 'TEST' 'FINAL'

starts at the first line of the data being edited and scans all lines up to and
including the last line, changing all occurrences of TEST to FINAL.

However, the command:
CHANGE .ZCSR .ZLAST ALL 'TEST' 'FINAL'

specifies a range, and is thus interpreted differently. The command changes only
the last part of the data.

When you use labels to specify a range, you must always use two labels to define
the first and last lines, inclusively. To process a single line, repeat the label:
CHANGE ALL " " "_" .A .A

The command in the previous example is interpreted as, “Change all blanks to
underscores on the .A line”.

The order in which you specify the labels is not important. The editor assumes that
the line closer to the beginning of the data set is the first line of the range, and the
line closer to the end of the data set is the last.

A common error when using a range is to assume that the search begins at the first
character of the line with the first label. Remember, however, that the default is
NEXT and that the search starts at the cursor location. Lines outside the range are
logically the same as the TOP OF DATA and BOTTOM OF DATA lines. Use the FIRST,
LAST, or PREV operands to ensure that the search begins within the range.

Using Labels and Line Ranges
The following examples show the results of using labels to identify ranges of lines.
They show that the order of both labels and other operands is not important, and
that you can type both labels and operands in either uppercase or lowercase.
v The following command locates the first line flagged ==CHG> between the line

labeled .start and the line with the cursor on it:
locate first chg .start .zcsr

Labels and Line Ranges

64 z/OS V1R2.0 ISPF Edit and Edit Macros

v The following command changes the last occurrence of pre to post between the
first line and the line marked with the .here label:
change last pre post .here .zfirst

v The following command changes all occurrences of pre to post from the .mylab
line to the last line of the data set:
change pre post all .mylab .zl

v The following command finds the word higher between the .start line and the
.end line:
find higher word .start .end

Word Processing
This section is a general overview of three line commands for word or text
processing: TF (text flow), TS (text split), and TE (text entry). The editor also
provides three corresponding edit macro commands: TFLOW, TSPLIT, and
TENTER. For the sake of simplicity, only the line commands are referred to.
However, the descriptions apply to the macro commands, as well.

TF, TS, and TE assume that the data is grouped in paragraphs. A paragraph is a
group of lines that begin in the same column. The first line of a paragraph is
excluded from the grouping. The editor interprets any indentation or blank line as
representing a new paragraph. It also recognizes word processor control words
that are used by the Document Composition Facility as the beginning of a
paragraph. These control words begin with a period, a colon, or an ampersand.

If you use text line commands frequently, you can assign both the TS and TF
commands to function keys. Use KEYS to reassign the keys. For example:
F10 ===> :TS
F11 ===> :TF

Now you can split text by moving the cursor to the desired split point within a
line and pressing F10. Having typed the new material, press F11 to restructure the
text from the line containing the cursor to the end of the paragraph.

Formatting Paragraphs
The TF (text flow) line command formats paragraphs. It assumes that the sentences
are roughly in paragraph form with a ragged right margin when it attempts to
recognize groupings. TF can be followed by a number (TF72 for example) that
specifies the desired right side column for the paragraph. If you do not specify a
number, the right side of the panel is used unless you have set bounds different
from the default. In that case, the right boundary is used. The editor assumes that
because the first line of a paragraph may be at a different indentation level than
the remainder of the paragraph, the starting column of the second line is the left
side of the paragraph.

When formatting paragraphs, the editor:
v Moves text so that each line contains the maximum number of words. TF limits

its activity to within the bounds. Thus, it can be used to flow text within a
border.

v Keeps any blanks between words.
v Assumes one blank between the word at the end of a line and the word on the

next line except when the line ends with a period. In that case, the editor inserts
two blanks.

Labels and Line Ranges

Chapter 3. Managing Data 65

The end of the paragraph is denoted by a blank line, a change in indentation, or
the special characters period (.), colon (:), ampersand (&), or left carat (<) in the left
boundary column. These special characters are used as Document Composition
Facility (SCRIPT/VS) control word delimiters.

The restructure operation removes trailing blanks on a line by using words from
the following line. It does not, however, remove embedded blanks within a line.
Accordingly, if one or more words in a line are to be removed, delete the words
rather than type over them.

The text to be restructured is taken from within the currently-defined column
boundaries. Any text outside the bounds is not included in the restructuring. The
restructured text is also positioned within the current boundaries. If the original
text was indented from the left boundary, that indentation is preserved.

Using Text Flow on a DBCS Terminal
You can restructure paragraphs containing lines that include DBCS strings based
on the following rules:
v If a character in a DBCS string encroaches on the rightmost column position for

the restructured text, the string is divided before that character. An SI character
is added at the end of the line, and an SO character is added at the beginning of
the new line.

v If the boundaries are defined and a DBCS character is on the boundary, the
DBCS character is in the text flow operation. An SO or SI character is added to
both lines to ensure that DBCS character strings remain enclosed with SO and SI
characters.

v If the mask contains DBCS fields and some of the DBCS fields cross the left,
right, or both boundaries, the result may be unpredictable.

v If a DBCS string crosses the left, right, or both boundaries, the result may be
unpredictable.

v When a text flow operation causes a field length of zero, the SO/SI or SI/SO
character strings that are next to each other are removed.

If you use the TF line command on a line while editing a formatted data set, you
should note that:
v The current boundaries are automatically changed during command processing,

and are reset to the original values after processing is complete. Changes are as
follows:
– If the left boundary falls on the second byte of a DBCS character in a DBCS

field, the boundary is shifted to the left by 1 byte.
– If the right boundary does not fall on the same field as the left boundary, it is

shifted to the last byte of the field that contains the left boundary. If it falls on
the same DBCS field as the left boundary, and it also falls on the first byte of
a DBCS character, the right boundary is shifted to the right by 1 byte.

v If you specify the column number with the TF command, and if the column falls
on the first byte of a DBCS character in a DBCS field, the column number
increases by one.

Splitting Lines
The TS (text split) line command splits a line into two lines. The cursor shows
where the line is to be split. The editor moves the characters to the right of the
cursor or to a new line following the original line and aligns the new line with the

Word Processing

66 z/OS V1R2.0 ISPF Edit and Edit Macros

left side of the paragraph. As mentioned earlier, the left side of a paragraph is
determined by looking for a pattern in the lines preceding or succeeding a
paragraph.

If the line being split is the first line in a paragraph, the new line is aligned with
the rest of the lines in the paragraph. If there are no other lines in the paragraph,
the portion of the line to the right of the cursor aligns itself with the first portion
of the line.

One or more blank lines are inserted after the line being split, depending on what
you specify when you enter the TS command. Note that the TSPLIT macro
command inserts only one blank line.

To rejoin lines, use the TF (text flow) line command. See “Formatting Paragraphs”
on page 65 for more information.

Splitting Lines Within a DBCS String
You can split a line within a DBCS string based on the following rules:
v When splitting at a DBCS character, an SI character is added to the end of the

line and an SO character is added at the beginning of the new line.
v If the cursor is placed at the SO character, the SO character becomes the first

character to be moved.
v If the cursor is placed at the SI character, the character following the SI character

becomes the first character to be moved.
v If the mask contains DBCS fields and some of the DBCS fields cross the left,

right, or both column boundaries, the result is unpredictable.

If you use the TS line command while editing a formatted data set, you make
special considerations for the current boundaries. These boundaries are
automatically changed during command processing, and are reset to the original
values after processing is complete. Changes are as follows:
v If the left boundary falls on the second byte of a DBCS character in a DBCS

field, the boundary is shifted to the left by 1 byte.
v If the right boundary does not fall on the same field as the left boundary, it is

shifted to the last byte of the field that contains the left boundary. If it falls on
the same DBCS field as the left boundary, and it also falls on the first byte of a
DBCS character, the right boundary is shifted to the right by 1 byte.

Entering Text (Power Typing)
The TE (text entry) line command allows you to power type. When using this
command, the display is filled with blank lines. The line number field normally on
the left of the display disappears, so that you can type all of your data as if it were
one continuous line. Because the editor is doing the formatting, you can continue
typing and ignore the wrap around on the display. Any explicit cursor movement
is interpreted as your personal formatting and results in embedded blanks.

The editor assumes that you are typing text as paragraphs. If you explicitly move
the cursor down and leave a blank line, the editor assumes that the blank line
should be there. The text that follows the blank line is consequently a new
paragraph. Similarly, if you leave a specified number of blanks between words, the
editor leaves them there. Also, if you tab to the beginning of the next line before
completing the current line, the editor does not flow these sentences together.
Remember that skipping a line specifies the start of a new paragraph.

Word Processing

Chapter 3. Managing Data 67

Note: You cannot use logical or hardware tabs during text entry.

When you press Enter, the text is flowed in the same manner as the TF (text flow)
line command, except that it uses the bounds as the right and left sides of the
paragraphs.

Entering Text on a DBCS Terminal
If you are using the TE line command in a formatted data set, you should note
that:
v The current boundaries are automatically changed during command processing,

and are reset to the original values after processing is complete. Changes are as
follows:
– If the left boundary falls on the second byte of a DBCS character in a DBCS

field, the boundary is shifted to the left by 1 byte.
– If the right boundary does not fall on the same field as the left boundary, it is

shifted to the last byte of the field that contains the left boundary. If it falls on
the same DBCS field as the left boundary, and it also falls on the first byte of
a DBCS character, the right boundary is shifted to the right by 1 byte.

v The attribute of the field where the left boundary falls is used for the text input
area attribute. The new input data is reformatted to fit within the current
boundaries.

Using Tabs
This section discusses hardware, software, and logical tabs, defining and
controlling tabs, defining tab positions, and using attribute bytes.

Types of Tabs

Software and Hardware Tabs
The editor uses software and hardware tabs to reposition the cursor within the
current display window. You can define tabs with the TABS line command. Use
underscores (_) or hyphens (-) to define software tabs and asterisks (*) to define
hardware tabs.

Logical Tabs
The editor uses logical tabs to reposition strings of data. You can use TABS
primary and macro commands, and the TABS assignment statement to define a
special character. The tab character locates the beginning of each string. Edit
repositions the strings one space to the right of hardware tab positions.

Notes:

1. You cannot use the command delimiter that you defined on the Terminal
Characteristics panel (option 0.1) as a special tab character.

2. Tabs are not functional when you are using the TE (text entry) line command.

Effect of TABS Commands on Tab Types
If you are using hardware or logical tabs, the TABS line command must be used
with one of the other TABS commands or the TABS assignment statement. For
example, hardware tab positions defined by the TABS line command do not take
effect until tabs mode is turned on, which the line command cannot do.
Conversely, a logical tab character defined with the TABS primary or macro
command, or the TABS assignment statement, cannot be used to position data
strings horizontally unless hardware tab positions are defined with the TABS line
command. However, if you are using software tabs, you do not need to turn tabs

Word Processing

68 z/OS V1R2.0 ISPF Edit and Edit Macros

mode on. The TABS primary and macros commands, and the TABS assignment
statement, have no effect on software tabs.

Defining and Controlling Tabs
Three TABS commands help you quickly position the cursor where you want to
start typing. These commands are the TABS line command, primary command, and
macro command. There is also a TABS assignment statement.

You type the TABS line command in the line command area over the line numbers.
This command:
v Displays the =TABS> (tab-definition) line
v Defines tab positions for software, hardware, and logical tabs.

You type the TABS primary command on the Command line. The TABS macro
command is processed from within an edit macro. The TABS primary and macro
commands can:
v Turn tabs mode on and off
v Define the logical tab character
v Control the insertion of attribute bytes at hardware tab positions that have been

defined with the TABS line command.

The TABS assignment statement is processed from within an edit macro. It can do
everything that the TABS macro command can do. In addition, the TABS
assignment statement can retrieve the setting of tabs mode and place it in a
variable.

You can use PROFILE to check the setting of tabs mode and the logical tab
character.

Defining Software Tab Positions
If you display the =TABS> line and type software tab definitions, they take effect
immediately. Each line contains a software tab or a tab field at the designated
column positions. The TABS primary command has no effect on software tab
definitions.

To define software tab positions:
1. Type TABS in the line command area and press Enter.
2. Type an underscore (_) or a hyphen (-) at each desired column position on the

=TABS> line.
3. Press Enter again to start the tabs.

You can move the cursor from one column position to the next by continuing to
press Enter. See “Using Software and Hardware Tabs” on page 191 for an example
of using software tabs.

Defining Hardware Tab Positions
Hardware tab definitions do not take effect until you turn on tabs mode by using
the TABS primary command. The asterisks define the column positions, but the
insertion of attribute bytes (hardware tabs) or the repositioning of data strings
(logical tabs) does not occur unless tabs mode is on.

To define hardware tab positions:
1. Type TABS in the line command area and press Enter.

Using Tabs

Chapter 3. Managing Data 69

2. Type an asterisk (*) at each desired column position on the =TABS> line.
3. Press Enter again.

When tabs mode is turned on using either the ON or ALL operand, the Tab
Forward and Tab Backward keys can be used to move the cursor to the space
following the next attribute byte.

Note: If the ALL operand is not used, attribute bytes are inserted only in spaces
that contain a blank or null character, causing the Tab Forward and Tab
Backward keys to recognize only these tab definitions.

When tabs mode is turned on using the tab-character operand, the Tab Forward and
Tab Backward keys do not recognize hardware tab definitions because no attribute
bytes are inserted.

Limiting the Size of Hardware Tab Columns
To limit the size of hardware tab columns, type consecutive asterisks between
columns to define hardware tab fields. The consecutive asterisks:
v Allow you to determine the length of the data string to be typed in a column
v Cause the cursor to automatically move to the next column when the current

column is full.

This procedure works only with asterisks (hardware tabs). When you type hyphens
or underscores (software tabs), PDF does not insert attribute bytes. Because
attribute bytes cannot be typed over, they limit the tab column size.

Insert the asterisks from the point where you want the column to end to the point
where the next column begins. For instance, suppose you want to limit each tab
column to five spaces. You could do so by following these steps:
1. Type COLS in the line command area and press Enter. A partial =COLS> line with

positions 9 through 45 is shown in the following example:
=COLS> -1----+----2----+----3----+----4----+

2. Type TABS ALL on the Command line and press Enter again. This command
causes PDF to insert an attribute byte at each hardware tab position defined by
an asterisk (*).

3. Using the TABS line command, change the =TABS> line as follows:
=COLS> -1----+----2----+----3----+----4----+
=TABS> * ***** *****

With the =TABS> line altered as shown, the cursor automatically skips to the next
tab column when 5 characters, blank spaces, or a combination of both are typed in
each column.

Using Attribute Bytes
Attribute bytes overlay characters only on the display; the attribute bytes are never
recorded in the data. If your data set contains DBCS fields, however, attribute
bytes can invalidate them. If you start hardware tabs and insert an attribute byte in
the middle of a DBCS field, you invalidate the DBCS field, and it is displayed as
an EBCDIC field. When you turn tabs mode off, the attribute bytes are removed
and the overlaid character at each tab position is displayed again.

When you are in formatted data edit mode, TABS is ignored.

Using Tabs

70 z/OS V1R2.0 ISPF Edit and Edit Macros

In tabs mode, you temporarily remove the attribute bytes from a single line. There
are two ways to do this:
v Blank out the entire Line Command field using the Erase EOF key.
v Place the cursor directly under one of the attribute bytes and press Enter. When

you press Enter again, the attribute bytes are reinserted.

Undoing Edit Interactions
If you enter an edit primary, line, or macro command, or type over existing data
by mistake, you can restore your data with the UNDO primary command. UNDO
has no operands.

Each time you enter UNDO it undoes one interaction. A single interaction might be
a data change and Enter key, a data change and function key, or the invocation of
an edit macro. All changes caused by an edit macro are considered to be one
interaction. You can continue to undo interactions, one at a time, until you have
reversed all changes made back to the beginning of your edit session unless you
have done a save or undo recycled. If you have done a save or if undo recycled,
you can only undo interactions back to that point. At that point, if you enter
UNDO again, a message informs you that there are no more interactions to undo.

UNDO has certain limitations. Edit interactions that the command does not undo
are:
v Changes that are made by an initial edit macro or recovery edit macro.
v Edit interactions before any data changes are made.
v Edit interactions in previous edit sessions.
v Reset of changed flags (==CHG>) by use of RESET or by typing over the

command line area.
v Changes you make to other data sets or members by using the CREATE,

REPLACE, or MOVE commands. Because UNDO affects only the member or
data set that you are editing, it removes lines from your display if they were
inserted there by MOVE. However, it does not put those lines back into the data
set or member from which they came.

See “UNDO—Reverse Last Edit Interaction” on page 290 for a discussion of UNDO
limitations.

UNDO is reset by SAVE. This means that you can UNDO interactions for the
current edit session until you save your data. After the save, you can undo only
interactions made following the time you saved your data.

UNDO can be run from data kept in storage or from the recovery file (as in
previous releases) depending on what you specify in the Edit Profile for the data
you are entering. The SETUNDO primary or macro command is used to control
the profile setting. To use UNDO, you must have either RECOVERY on or
SETUNDO on. You can undo only those changes made after RECOVERY or
SETUNDO was turned on.

SETUNDO allows you to specify how changes you make during your edit session
are to be recorded and used by UNDO. You can specify SETUNDO STORAGE or
SETUNDO RECOVER. SETUNDO STORAGE specifies UNDO from storage.
SETUNDO RECOVERY specifies UNDO from recovery and turns recovery on if it

Using Tabs

Chapter 3. Managing Data 71

is off. See “SETUNDO—Set the UNDO Mode” on page 283 for more details.
“Understanding Differences in SETUNDO Processing” explains how the
SETUNDO operands differ.

If not enough storage is available to run UNDO from storage but RECOVERY is
on, UNDO processing continues to be available by using the recovery file. This
makes UNDO available for very large files. It also provides users of machines with
less storage with the benefit of UNDO for their larger files.

Note: If you have specified RECOVERY OFF and your installation allows UNDO
from storage, the message that UNDO is unavailable does not display when
you enter an edit session. If UNDOSIZE = 0, the message appears as before.

The UNDOSIZE specifies the number of kilobytes allowed for saving edit
transactions for UNDO and the value is in the configuration table. For more
details, refer to ISPF Planning and Customizing

If UNDOSIZE is set to zero, all undo documented functions work as in ISPF/PDF
Version 3.3 and previous releases. This means that the Profile lines do not show
the status of SETUNDO, and that warning messages will be shown informing you
that UNDO is unavailable until RECOVERY is turned on.

UNDO Processing
When the storage allocated for changes is exhausted, UNDO recycles itself and puts
up the message UNDO RECYCLED. Recycling is the process of saving the current
image of the file as a new base from which to work. UNDO is then available after
the next transaction. No transactions made before the recycling can be undone.
This is because UNDO saves an image of the original file and keeps an incremental
list of changes to that image.

If there is not enough storage to save the initial image, then UNDO attempts to use
the recovery file for undo processing. If recovery is off or suspended, the message
UNDO SUSPENDED is shown with an alarm, and the profile status line is changed to
SETUNDO SUSP. If recovery is available, the message UNDO FROM RECOVERY is shown
with an alarm, and the profile status line is changed to SETUNDO REC. This affects
the display but does not affect the edit profile values.

To resume SETUNDO STG, enter the SETUNDO primary command. If there is still
not enough storage to hold the original copy of the file, the recycling procedure is
repeated.

Note: Edit recovery can no longer process edit recovery files created under
previous releases of ISPF/PDF. A panel is displayed, but no other action is
taken if an old recovery file is used.

Understanding Differences in SETUNDO Processing
SETUNDO STORAGE and SETUNDO RECOVERY work essentially the same way;
however, there are some important differences. SETUNDO REC is available only
after the edit recovery file is initialized, that is, until the first data change is made.
Because SETUNDO STG keeps its record of changes in storage, it does not incur
the same performance penalty as using the SETUNDO REC.

SETUNDO STG can start to save editing changes earlier than SETUNDO REC,
because even non-data changes, such as setting line labels, adding note lines, and
inserting blank lines, cause SETUNDO STG to initialize its record of changes. You

Undoing Edit Interactions

72 z/OS V1R2.0 ISPF Edit and Edit Macros

can undo these changes using UNDO even if no data changes have been made.
When SETUNDO REC is in effect, only changes made after and including the first
change to edit data can be undone.

UNDO reverses changes made during a single edit transaction. It is important to
note, however, that changes to the profile, such as HEX ON, LEVEL, and CAPS,
are not undone separately. A data change followed by one or more profile changes
is usually considered a single transaction. For example, if you change the data and
then the profile, and then enter UNDO, the data and profile return to their statuses
before the data change. Profile changes usually cannot be undone if they are not
preceded by a data change. SETUNDO STG and SETUNDO REC may work
slightly differently in this regard. Since SETUNDO STG keeps the record of
changes in storage, it is not a substitute for recovery. To recover the edit session
after a system failure, you must have recovery on during the edit session.
SETUNDO STG and RECOVERY ON can be in effect simultaneously, however,
after a system crash and a recovery, no transactions can be undone using
SETUNDO STG because the in-storage record will be empty.

If you are running both SETUNDO STG and RECOVERY ON, the UNDO
command causes the last change to be backed out using the in-storage record of
edit changes, and the recovery data set to be reinitialized. If you issue a SETUNDO
REC command, after you use UNDO (from storage), there will be no more
transactions to UNDO since the recovery file has been reinitialized.

Undoing Edit Interactions

Chapter 3. Managing Data 73

Undoing Edit Interactions

74 z/OS V1R2.0 ISPF Edit and Edit Macros

Chapter 4. Using Edit Models

This chapter describes the PDF component edit models and tells you how to use
them.

What Is an Edit Model?
A model is a predefined set of statements for a dialog element that you can include
in the data you are editing and then modify to suit your needs. When you enter
the MODEL command, you can select the correct segment for the data type being
edited.

The PDF component is shipped with an initial set of models for panels, messages,
skeletons, and command and program processing of ISPF and PDF component
services. You can add more. There are no models of edit macro commands and
assignment statements.

A model has two parts:

Data lines
These are the actual lines that are placed in the data you are editing. For
example, the data might be a dialog service call or a panel format. You can
update fields in the source statements by inserting names, parameters, and
so forth.

The models also include source statement comments for models of dialog
service calls to document the meanings of the possible return codes from
the service. The comments are in a valid format for the particular kind of
model. These comments give you the information you need to develop
error-handling logic for your function. Sometimes they provide parameter
descriptions for other kinds of models.

Notes Notes provide tutorial information about how to complete source code
statements. You can specify whether you want the notes displayed during
the edit session by using the NOTES command or the NOTES or
NONOTES operand on the MODEL command. To remove notes from the
panel, issue RESET. To convert the notes to data so that they can be saved
with your data set, use the MD (make dataline) line command.

How Models Are Organized
Models are organized and named according to a hierarchy based on the type and
version of the dialog element they represent. Each part of the model’s name
corresponds to a level in the hierarchy.

The first part of the logical name is the model class. There is a model class for each
data set type qualifier that can store a dialog element. The Model Classes panel,
Figure 24 on page 76, lists the classes defined for the models distributed by the
PDF component. This panel prompts you when you need to set the desired model
class, if you do not name the class explicitly.

© Copyright IBM Corp. 1984, 2001 75

You can use the default for this part of the logical name whenever the edit profile
name matches the class of the model desired.

The second part of the logical name is the model name, which identifies the specific
model within the model class. Frequently, it uniquely identifies a model and
completes the logical name. To uniquely identify a model, you can define optional
qualifiers. Qualifiers are used, for example, to differentiate among the various kinds
of panel verification (VER) statements.

A hierarchy of selection panels defines the hierarchy of models. The different parts
of the logical name of a model are selections on the panels that you can choose
either by keyword name or option identifier. This allows you to be prompted by
selection panels if you do not know the logical name of the model you want or to
bypass the display of these panels if you do know the name.

Usually, you do not need to worry about the model class. You must specify it only
if you want to use a class that is different from the edit profile name. The model
function of the editor recognizes PANELS as a valid type qualifier for panel
models, so you do not need to specify the class when requesting a panel model
from a data set with a type qualifier of PANELS (assuming you allow the edit
profile name to default to panels).

Assume, however, that you call your panels screens and maintain them in a data
set with a type of SCREENS. When you want to use a model to develop a new
panel, you enter the MODEL command. The model function does not recognize
SCREENS as a model class, so you are prompted to identify the class you want,
which is the PANELS class in this situation.

Once you have specified a class, whether by panel selection or by use of the
MODEL CLASS command, that class remains in effect until you change it. The two
ways to change the class specification are by typing a data set name with a
different type qualifier, or by leaving the Edit Entry panel.

Model Classes

Enter number or Class of model.

1 CLIST - ISPF services in CLIST commands
2 COBOL - ISPF services in COBOL programs
3 EXEC - ISPF services in EXEC commands
4 FORTRAN - ISPF services in FORTRAN programs
5 MSGS - Message format
6 PANELS - Panel formats and statements
7 PLI - ISPF services in PLI programs
8 SKELS - File tailoring control statements
9 PASCAL - ISPF services in PASCAL programs
10 REXX - ISPF services in TSO/REXX commands
11 DTL - ISPF Dialog Tag Language formats and statements
12 C - ISPF services in C/370 programs
13 SCLM - SCLM Project Definition Macros
14 ARCHDEF - SCLM Architecture Definition templates

Enter END command to cancel MODEL command.

Option ===> ___
F1=Help F2=Split F3=Exit F9=Swap F12=Cancel

Figure 24. Model Classes Panel (ISREMCLS)

Model Hierarchy

76 z/OS V1R2.0 ISPF Edit and Edit Macros

How to Use Edit Models
You use models to assist you in defining a dialog element. To use a model, first
edit your data. Then determine where you want to place the model. If you are
editing existing data, define a label or use the A (after) or B (before) line command
to show where the model goes. You do not need to use the A or B command when
you have a new data set. Then type MODEL on the Command line and press Enter.

If you know the logical name of the model you want, you can use it to directly
access the model. Type MODEL mmm, where mmm is the name of the model. For
example, if you want the model for LMCLOSE, you would specify MODEL LMCLOSE.
If you enter MODEL with no parameters, PDF displays a series of selection panels,
from which you select the model name and any qualifiers.

The original data is then displayed with the model in place. You can type over or
use line commands to change the data lines in the model to meet your needs.

As an example, assume that you are writing a dialog function using CLIST
commands and you want to have the CLIST display a panel. You are editing your
CLIST member, called USERID.PRIVATE.CLIST(DEMO1). Since your data set type,
CLIST, matches the class of models you want, you can allow the model class to
default. If you enter MODEL without a model name, the CLIST Models panel,
Figure 25, appears.

If you select option D1 (DISPLAY), the editor inserts the model for the DISPLAY
service in your CLIST at the location you specify with a label or an A or B line
command. Notes are identified by the characters =NOTE= in the line command area
(Figure 26 on page 78).

Figure 25. CLIST Models Panel (ISREMCMD)

How to Use Edit Models

Chapter 4. Using Edit Models 77

With the notes as a guide, you can edit the CLIST to change the DISPLAY service
call parameters for your function. The error-handling source code shown serves as
a skeleton which you can update. Finally, use RESET to eliminate the notes from
the panel, leaving the service call, the error-handling logic, and the comments.
Some models also include examples in NOTE lines. Use the MD line command to
turn NOTE lines into data lines.

Figure 26. DISPLAY Service Model

How to Use Edit Models

78 z/OS V1R2.0 ISPF Edit and Edit Macros

Adding, Finding, Changing, and Deleting Models
Models are implemented in a general fashion, so your installation can apply and
use the concept for other tasks besides dialog development. You can create a set of
PL/I call models for your IMS applications, or a set of report format models for
your sales forecasting application. You can also create models for the JCL
statements that you use most frequently.

Similarly, you may find that the models provided for panel formats do not
correspond to the standards for your local installation or for your particular
application. You can change the distributed panel models to match your own
requirements.

This section describes how you can add a new model to your skeleton library,
change an existing model, or delete an existing model.

Adding Models
To create a new model, you must:
1. Determine the data set name and member name for the model. For actual use,

the model must be in a skeleton library.
2. Create the source code for the model. Consider whether you should create all

new source code or whether you should change an existing model under a new
name.
When you create a COBOL model, make sure number mode is on. Then, when
you save the model, turn number mode off.

3. Make the model accessible from a model selection panel by having its selection
call the program ISRECMBR with the actual model member name as its
parameter. This involves:
v Changing an existing model selection panel to add the new panel.
v Creating a new model selection panel. If you do this, you must add the new

panel to the hierarchy of selection panels by changing one of the higher-level
panels.

v No change, if you are replacing an existing model with an updated model
with the same name.

As an example of adding a model, assume that you want to create a model for
multiple-line block letters. Since you intend to use these block letters on panels, the
model becomes part of the panel model class.

To build a model block letter, use the editor to create a new member in your
skeleton library. For this example, the member name is BLKI. By manipulating
input, you can develop the letter I (Figure 27).

IIIIIIIIII
II
II
II
II
II

IIIIIIIIII
)N
)N the letter I for logo

Figure 27. Sample Block Letter Model

Adding, Finding, Changing, and Deleting Models

Chapter 4. Using Edit Models 79

Once the model for each letter is built, you must update the selection panel in the
prompting sequence that deals with panel model selection. Figure 28 shows the
displayed form of this panel, panel ISREMPNL in the system panel library.

Copy the panel shown in Figure 28 into your panel data set and change it by
adding a format F1, BLOCKLTR. See Figure 29 for an example.

If there are several new models, this panel should be updated so that when you
select F2, a new Block Letter selection panel is displayed. Therefore, you should

Figure 28. Panel Models Panel (ISREMPNL)

------------------------------ PANEL MODELS ---------------------------------

STATEMENTS:

S1 ASSIGN - Assignment statement S12 VGET - Variable get statement
S2 ATTR -)ATTR section header S13 PANEXIT - Panel Language Exit
S3 ATTRIB - New attribute

character definition S14 ABC - Action bars
S4 BODY -)BODY section header S15 KEYLIST - Keylist specification
S5 CONTROL - Control variables S16 PDC - Action bar pull-down
S6 IF - If statement S17 VEDIT - Validate a variable
S7 MODEL -)MODEL section header S18 CUAATTR - CUA attributes
S8 VER - Verify statement
S9 VPUT - Variable put statement PANEL FORMATS
S10 REFRESH - Refetch variables

prior to redisplay F0 PANFORM
S11 ATTRIBA - New attribute F1 BLOCKLTR

character definition
for areas

Enter END command to cancel MODEL command.

Option ===> ___
F1=Help F2=Split F3=Exit F9=Swap F12=Cancel

Figure 29. Changed Panel Models Panel (ISREMPNL)

Adding, Finding, Changing, and Deleting Models

80 z/OS V1R2.0 ISPF Edit and Edit Macros

change the)PROC section of panel ISREMPNL to include item F2. See Figure 30 for
an example.

This concept allows you and other users to have sets of individual models, and
allows the installation to have its own set of general models, without having
multiple copies of the PDF model selection panels. For each model class, the
installation could provide two additional entries on the selection panel: one for
installation-wide models and one for your models. Each entry could point to a
selection panel, with each user having a copy of the selection panel to customize
for individual use.

Note that the entry for F2, BLOCKLTR, points to a new panel, BLKLTRS, which
you must now build.

You can change an existing panel model to create the new panel. Figure 31 on
page 82 shows how the new panel might be typed. Note particularly the)INIT and
)PROC sections of the coding. In the)PROC section of panel BLKLTRS, the target for
all valid selections is the program ISRECMBR. The parameter passed to this
program is different for each separate, but valid, selection and is the name of the
model for that selection. Thus, for our example, the model name for selection 1 or I
is BLKI.

You should follow the)INIT source code and the end source code in the)PROC
section shown in Figure 31 on page 82 for all new panels.

Figure 30. Changed)PROC Section of Panel Models Panel (ISREMPNL)

Adding, Finding, Changing, and Deleting Models

Chapter 4. Using Edit Models 81

Finding Models
Before you change or delete a model, you must determine the physical name of the
model in the skeleton library. Refer to ISPF Planning and Customizing for a list of
the names of the models of dialog elements distributed with PDF. In addition, you
can use the following method to find the member name for any model.

You can find the member name for any model in the)PROC section of the final
selection panel used to get it. The member name is the parameter passed to
ISRECMBR, the program called when you choose that selection.

) A T T R
) BOD Y
% - B L OCK L E T T E R -
%OP T I ON = = = > _Z CMD +

%
% 1 + I - B l o c k l e t t e r I
% 2 + J - B l o c k l e t t e r J
% 3 + K - B l o c k l e t t e r K
%
%
+
+ E n t e r %E ND + c omma n d t o c a n c e l MOD E L c omma n d . +

%
) I N I T

. CUR SOR = Z CMD

. H E L P = I S R x x x x x
I F (& I S RMD S P L = ' R E T UR N ')

. R E S P = E ND
) P ROC

& Z S E L = T R AN S (T R UNC (& Z CMD , ' . ')
1 , ' PGM (I S R E CMB R) P ARM (B L K I) '
I , ' PGM (I S R E CMB R) P ARM (B L K I) '
2 , ' PGM (I S R E CMB R) P ARM (B L K J) '
J , ' PGM (I S R E CMB R) P ARM (B L K J) '
3 , ' PGM (I S R E CMB R) P ARM (B L K K) '
K , ' PGM (I S R E CMB R) P ARM (B L K K) '
* , ' ? ')

I F (& Z S E L = ' ? ')
. MSG = I S R YM0 1 2

& I S RMME ND = ' N ' / * S E T T H E E ND I ND I CA T OR T O NO * /
I F (. R E S P = E ND) / * I F E ND I NG , WH Y . . . WHO CAU S E D * /

I F (& I S RMONCL = ' Y ') / * MAK E S UR E I T S NO T A CL A S S OP . * /
I F (& I S RMD S P L = ' R E T UR N ') / * MAK E S UR E I T S NO T E ND ON MB R . * /

& I S RMME ND = ' Y ' / * NO - I T S B E CAU S E U S E R H I T E ND * /
) E ND

Figure 31. Source Code for Block Letter Model Selection Panel

Adding, Finding, Changing, and Deleting Models

82 z/OS V1R2.0 ISPF Edit and Edit Macros

To determine the name of the model selection panel so that you can look at it to
find the model member name, use the PANELID command when that panel is
displayed. Then use the Browse or Edit options to look at the member of the panel
library with that name.

Changing Models
To change a model that currently exists, copy the existing model from the skeleton
data set into your own data set. Then use the editor to change the model in the
same way you would change any text data set.

Note: Any lines that are to contain notes must have)N in positions 1 and 2,
followed by one or more blanks, as shown in the following example.

VARIABLE = VALUE
)N VARIABLE - A DIALOG VARIABLE OR A CONTROL VARIABLE.
)N VALUE - A LITERAL VALUE CONTAINING: SUBSTITUTABLE
)N VARIABLES, A DIALOG VARIABLE, A CONTROL
)N VARIABLE, OR AN EXPRESSION CONTAINING A
)N BUILT-IN FUNCTION.
)N EXAMPLES: &DEPT = 'Z59' &A = &B &C = ' '

When the model is later accessed using MODEL, the lines with)N indicators are
flagged with =NOTE= in the line command area (Figure 26 on page 78).

Deleting Models
You can delete models by deleting the references to them. To delete the references,
remove the entry referencing the model in both the)BODY and)PROC sections of
the model selection panel.

Generally, you can leave the model itself in the skeleton library. However, if you
are deleting a substantial number of models, you can delete those members from
the library and then compress it.

Adding, Finding, Changing, and Deleting Models

Chapter 4. Using Edit Models 83

84 z/OS V1R2.0 ISPF Edit and Edit Macros

Part 2. Edit Macros

Chapter 5. Using Edit Macros. 87
What Are Edit Macros? 87

Performing Repeated Tasks 87
Simplifying Complex Tasks 89
Passing Parameters, and Retrieving and
Returning Information 90

Chapter 6. Creating Edit Macros. 93
CLIST and REXX Edit Macros 93

Edit Macro Commands and Assignment
Statements. 94

Using the REXX ADDRESS Instruction . . . 94
Command Procedure Statements 94
ISPF and PDF Dialog Service Requests 95
TSO Commands 95

Program Macros 95
Differences between Program Macros, CLISTs,
and REXX EXECs 96
Passing Parameters in a Program Macro 96
Program Macro Examples 97
Writing Program Macros 97
Running Program Macros 100

Using Commands in Edit Macros. 101
Naming Edit Macros 101
Variables 101

Variable Substitution 102
Character Conversion 102

Edit Assignment Statements 102
Value 102
Keyphrase 103
Overlays and Templates 104
Using Edit Assignment Statements 104
Passing Values 105
Manipulating Data With Edit Assignment
Statements 105
Differences Between Edit, CLIST, and REXX
Assignment Statements 106

Performing Line Command Functions 106
Parameters 107
Passing Parameters to a Macro 107
Using Edit macros in Batch. 109
Edit Macro Messages 109
Macro Levels 109
Labels in Edit Macros. 110

Using Labels 110
Referring to Labels 111
Passing Labels 112

Referring to Data Lines 112
Referring to Column Positions 112
Defining Macros 113

Defining an Alias 113
Resetting Definitions 113
Replacing Built-In Commands 113
Implicit Definitions 114

Using the PROCESS Command and Operand 114

Specifying NOPROCESS in the Macro
Statement. 114
Specifying a Destination 114
Specifying a Range 114
Example 115

Recovery Macros 115
Return Codes from User-Written Edit Macros. . . 116
Return Codes from PDF Edit Macro Commands 117
Selecting Control for Errors 117

Chapter 7. Testing Edit Macros 119
Handling Errors 119

Edit Command Errors 119
Dialog Service Errors 119

Using CLIST WRITE Statements and REXX SAY
Statements 120
Using CLIST CONTROL and REXX TRACE
Statements 121
Experimenting with Macro Commands 122
Debugging Edit Macros with ISREMSPY 123

Chapter 8. Sample Edit Macros. 125
TEXT Macro. 125
PFCAN Macro 127
BOX Macro 128
IMBED Macro 130
ALLMBRS Macro 133
FINDCHGS Macro 136
MASKDATA Macro 139

© Copyright IBM Corp. 1984, 2001 85

||

86 z/OS V1R2.0 ISPF Edit and Edit Macros

Chapter 5. Using Edit Macros

This chapter documents general-use programming interfaces and associated
guidance information.

This chapter describes edit macros and describes several examples of their use.

What Are Edit Macros?
You can use edit macros, which look like ordinary editor commands, to extend and
customize the editor. You create an edit macro by placing a series of commands
into a data set or member of a partitioned data set. Then you can run those
commands as a single macro by typing the defined name in the command line.

Edit macros can be either CLISTs or REXX EXECs written in the CLIST or REXX
command language, or program macros written in a programming language (such
as FORTRAN, PL/I, or COBOL). This manual uses the CLIST command language
for most of its examples, with a few examples in REXX. Examples of program
macros are in “Program Macros” on page 95.

Edit macros can also contain edit assignment statements that communicate
between a macro and the editor. These statements are made up of two parts,
keyphrases and values, that are separated by an equal sign. Edit assignment
statements are described in “Edit Assignment Statements” on page 102.

Edit macros have access to the dialog manager and system services. Because edit
macros are CLISTs, or REXX EXECs, programs, they have unlimited possibilities.

Note: All edit macros must have an ISREDIT MACRO statement as the first edit
command. For more information see “Macro Command Syntax” on
page 360.

You can use edit macros to:
v Perform repeated tasks
v Simplify complex tasks
v Pass parameters
v Retrieve and return information.

The remainder of this chapter presents examples of these tasks.

Note: To run an edit macro against all members of a PDS you can use a program
containing a loop that uses a LMMLIST service to obtain the names of PDS
members. For each member issue an ISPEXEC edit command with the initial
macro keyword. For an example, see Figure 59 on page 134.

Performing Repeated Tasks
You can use an edit macro to save keystrokes when you frequently perform a task.
A simple example would be using a macro to delete every line that begins with a
dash (-) in column 1. You could scan the data and manually delete each line, or
you could write a macro that does the same thing much faster. The edit macro in

© Copyright IBM Corp. 1984, 2001 87

Figure 32 processes the commands necessary to delete the lines and requires only
that you enter the DASH macro.

When you run this macro, it deletes all lines beginning with a dash, except the first
one. To run the macro, type dash on the Command line (Figure 33). The dash
macro deletes all lines that began with a dash except the first one (Figure 34 on
page 89).

/ * * /
/ * DA S H MACRO - D E L E T E L I NE S W I T H A ' - ' I N COL UMN 1 * /
/ * * /
I S R E D I T MACRO

I S R E D I T R E S E T E XCL UD E D / * E n s u r e n o l i n e s a r e e x c l u d ed * /
I S R E D I T E XCL UD E A L L ' - ' 1 / * E x c l u d e l i n e s w i t h ' - ' i n c o l 1 * /
I S R E D I T F I ND F I R S T ' - ' 1 / * S h ow t h e f i r s t s u c h l i n e * /
I S R E D I T D E L E T E A L L E XCL UD E D / * D e l e t e a l l l i n e s l e f t e x c l u d ed * /

E X I T COD E (0)

E X C E P T F I R S T ' - '

Figure 32. DASH Macro

Figure 33. DASH Macro - Before Running

What Are Edit Macros?

88 z/OS V1R2.0 ISPF Edit and Edit Macros

Simplifying Complex Tasks
If you need to perform an involved task, you can include logic in your edit macro.
For instance, the TESTDATA macro shown in Figure 35 creates variations of the
same line by first finding the succeeding test string number, and then changing
each occurrence, using ascending numbers one through nine.

Figure 34. DASH Macro - After Running

/ * * /
/ * T E S T DA T A g e n e r a t e s t e s t da t a * /
/ * * /
I S R E D I T MACRO

S E T &COUN T = 1 / * S t a r t l o op c o u n t e r * /
DO WH I L E &COUN T < = 9 / * L o op u p t o 9 t i me s * /

I S R E D I T F I ND ' T E S T - # ' / * S ea r c h f o r ' T E S T - # ' * /
S E T &R E T COD E = & L A S T CC / * S a v e t h e F I ND r e t u r n c o d e * /
I F &R E T COD E = 0 T H E N / * * / -

DO / * I f t h e s t r i n g i s f o u n d , * /
I S R E D I T CHANGE ' # ' ' &COUN T ' / * c h a n g e ' # ' t o t h e v a l u e * /
S E T &COUN T = &COUN T + 1 / * o f ' &COUN T ' , i n c r eme n t * /

E ND / * t h e c o u n t e r b y o n e , a n d * /
E L S E / * c o n t i n u e t h e l o op . * / -

S E T &COUN T = 1 0 / * I f t h e s t r i n g i s n o t * /
E ND / * f o u n d , s e t t h e c o u n t e r t o * /

E X I T COD E (0) / * e x i t t h e l o op . * /

Figure 35. TESTDATA Macro

What Are Edit Macros?

Chapter 5. Using Edit Macros 89

To run the test macro, type testdata on the Command line (Figure 36). The macro
numbers the first nine lines of data (Figure 37).

Passing Parameters, and Retrieving and Returning
Information

You can also write macros to get information from other users and from the editor,
and to display messages to other users. The COUNTSTR macro, as shown in

Figure 36. TESTDATA Macro - Before Running

Figure 37. TESTDATA Macro - After Running

What Are Edit Macros?

90 z/OS V1R2.0 ISPF Edit and Edit Macros

Figure 38, finds occurrences of the string TEST from the previous example, counts
them, and prepares a return message.

To run the COUNTSTR macro, type countstr TEST on the Command line (
Figure 39). The macro does not change the data but displays return messages to
show the number of times it found the string. The editor always displays the short
message in the upper right-hand corner of the screen. Enter HELP (the default is
F1) to produce the long message (Figure 40 on page 92).

/ * * /
/ * COUN T S T R c o u n t s t h e n umb e r o f o c c u r r e n c e s * /
/ * o f a s t r i n g , a n d r e t u r n s a me s s ag e * /
/ * * /
I S R E D I T MACRO (P ARMS T R)

I S R E D I T S E E K A L L &P ARMS T R
I F & L A S T CC > 1 2 T H E N DO

S E T & Z E D SMSG = & S T R (S E E K E R ROR)
S E T & Z E D L MSG = & S T R (S T R I NG NO T F OUND)

E ND
E L S E DO

I S R E D I T (COUN T) = S E E K _COUN T S
S E T &COUN T = &COUN T
S E T & Z E D SMSG = & S T R (" &P ARMS T R " F OUND &COUN T T I ME S)
S E T & Z E D L MSG = & S T R (T H E S T R I NG " &P ARMS T R " WA S F OUND +

&COUN T T I ME S .)
E ND

I S P E X E C S E TMSG MSG (I S R Z 0 0 0)
E X I T COD E (0)

Figure 38. COUNTSTR Macro

Figure 39. COUNTSTR Macro - Before Running

What Are Edit Macros?

Chapter 5. Using Edit Macros 91

Figure 40. COUNTSTR Macro - After Running

What Are Edit Macros?

92 z/OS V1R2.0 ISPF Edit and Edit Macros

Chapter 6. Creating Edit Macros

This chapter documents general-use programming interfaces and associated
guidance information.

Edit macros are ISPF dialogs that run in the ISPF editor environment.

CLIST edit macros must be in partitioned data sets in at least one of the following
concatenations: SYSUPROC, ALTLIB (for data sets activated as CLISTs), or
SYSPROC. Data sets in these concatenations can contain either CLIST edit macros,
REXX edit macros, or a combination of the two. However, REXX edit macros in
these concatenations must include a REXX comment line (/* REXX */) as the first
line of each edit macro to distinguish them from CLIST edit macros. This comment
line can contain other words or characters if necessary, but it must include the
string REXX.

Note: For more information about the ALTLIB concatenation, refer to TSO
Extensions Version 2 Command Reference

REXX edit macros must also be in partitioned data sets. Besides the concatenations
in the previous list for CLIST edit macros, REXX edit macros can exist in the
following concatenations: SYSUEXEC, ALTLIB (for data sets activated as EXECs),
and SYSEXEC. Data sets in these concatenations can contain only REXX EXECs.

For example, if an application activates an application-level library with the
following commands:
ALTLIB ACTIVATE APPLICATION(EXEC) DA(DS1 DS2 DS3)
ALTLIB ACTIVATE APPLICATION(CLIST) DA(DSA DSB DSC)

then data sets DS1, DS2, and DS3 must contain only REXX EXECs. However, data
sets DSA, DSB, and DSC can contain either REXX EXECs or CLISTs; if these data
sets contain REXX EXECs, the first line of each EXEC must be a REXX comment
line.

As in an ISPF dialog, program macros must be made available as load modules in
either the ISPLLIB, STEPLIB, or LINKLST library.

CLIST and REXX Edit Macros
A CLIST edit macro is made up of CLIST statements and a REXX edit macro is
made up of REXX statements. Each statement falls into one of the following
categories:
v Edit macro commands
v CLIST or REXX command procedure statements and comments
v ISPF and PDF dialog service requests
v TSO commands.

All statements are initially processed by the TSO command processor, which scans
them and does symbolic variable substitution. It is important to recognize the
different kinds of CLIST and REXX statements listed because:
v They are processed by different components of the system.
v They have different syntax rules and error handling.
v Their descriptions are in different manuals.

© Copyright IBM Corp. 1984, 2001 93

Edit macros are invoked by the editor using the ISPF SELECT service. For REXX
macros, the BARRIER keyword is specified to ensure the REXX data stack is
preserved across macro invocations.

Edit Macro Commands and Assignment Statements
Any statement in an edit macro that begins with ISREDIT is assumed to be an edit
macro command or assignment statement. When such a statement is found, the
CLIST or REXX command processor does symbolic substitution and then passes it
to the editor. The editor processes it, performing any requested functions.
Examples of two edit macro commands are:

CLIST Statements REXX Statements

ISREDIT FIND "TEST475"
ISREDIT PROCESS

ADDRESS ISPEXEC
'ISREDIT FIND TEST475'
'ISREDIT PROCESS'

Examples of two edit macro assignment statements are:

CLIST Statements REXX Statements

ISREDIT BOUNDS = 1,60
ISREDIT (WIDTH) = LRECL

ADDRESS ISPEXEC
'ISREDIT BOUNDS = 1,60'
'ISREDIT (WIDTH) = LRECL'

A description of each edit macro command and assignment statement is in
Chapter 11. Edit Macro Commands and Assignment Statements.

Using the REXX ADDRESS Instruction
If you have several edit macro commands within a REXX EXEC, you can change
the command environment to the PDF editor with the instruction ADDRESS ISREDIT.
All subsequent commands in the EXEC are passed directly to the editor. The
following examples show how you can pass the same edit macro commands using
different environments:

ISPEXEC Environment ISREDIT Environment

ADDRESS ISPEXEC
'ISREDIT BOUNDS = 1,60'
'ISREDIT (WIDTH) = LRECL'

ADDRESS ISREDIT
'BOUNDS = 1,60'
'(WIDTH) = LRECL'

For information on using the REXX ADDRESS instruction, refer to TSO/E Version 2
REXX Reference

Command Procedure Statements
Command procedure statements handle CLIST and REXX variables and control
flow within a CLIST or REXX EXEC. When a command procedure statement is
found, it is processed by the TSO command processor. Some of the command
procedure statements commonly seen in PDF edit macros are:
v Assignment statements
v IF-THEN-ELSE statements
v DO-WHILE-END statements
v EXIT statements.

For a complete list and description of command procedure statements for CLIST
and REXX, refer to TSO Extensions CLISTs, TSO/E Version 2 REXX Reference, and
TSO/E Version 2 REXX User’s Guide.

CLIST and REXX Edit Macros

94 z/OS V1R2.0 ISPF Edit and Edit Macros

|
|
|

ISPF and PDF Dialog Service Requests
Any statement in an edit macro beginning with ISPEXEC is assumed to be an ISPF
or PDF component dialog service request. When such a statement is found, the
TSO command processor does symbolic substitution. It then passes the command
to the appropriate ISPF or PDF component service to be processed. Some examples
of service requests that might be in a PDF component edit macro are:

CLIST Statements REXX Statements

ISPEXEC SETMSG ...
ISPEXEC VPUT ...
ISPEXEC DISPLAY ...
ISPEXEC EDIT ...
ISPEXEC LMINIT ...

ADDRESS ISPEXEC
'SETMSG ...'
'VPUT ...'
'DISPLAY ...'
'EDIT ...'
'LMINIT ...'

For more information on ISPF services, refer to ISPF Services Guide For more
information on PDF services, refer to ISPF Examples.

TSO Commands
Any statement that is not recognized as a command procedure statement and does
not begin with ISPEXEC or ISREDIT is assumed to be a TSO command. TSO
commands can be either CLISTs, REXX EXECs, or programs. When the command
processor finds a TSO command, it processes the command. Examples of TSO
commands are:

CLIST Statements REXX Statements

ALLOCATE ...
FREE ...
DELETE ...
RENAME ...

ADDRESS TSO
'ALLOCATE ...'
'FREE ...'
'DELETE ...'
'RENAME ...'

For more information on TSO commands, refer to TSO Extensions Command
Language Reference

Program Macros
Besides writing edit macros as CLISTs and REXX EXECs, you can also write edit
macros in programming languages, just as you write program dialogs. These are
called program macros.

PDF accepts all languages supported by ISPF. Refer to ISPF Dialog Developer’s Guide
and Reference for more information.

There are four basic reasons to write and debug a program macro:
v A macro runs faster in a language that can be precompiled than in the CLIST or

REXX interpretive languages. This can be valuable for macros that you run
many times.

v A macro that has to deal with data containing symbols can confuse an
interpretive language processor. Particularly, ampersands in the data can cause
problems.

v A macro that has complex logic can be handled better in a programming
language.

CLIST and REXX Edit Macros

Chapter 6. Creating Edit Macros 95

v To pass mixed data or strings (those that contain both EBCDIC and DBCS
characters) as parameters, you must use a program macro. Although CLIST does
not allow mixed data strings, there are edit macro commands and assignment
statements that allow you to supply data or string operands. The edit macro
commands and assignment statements that allow you to supply data or string
operands are:

CHANGE LINE MASKLINE
EXCLUDE LINE_AFTER SEEK
FIND LINE_BEFORE TABSLINE

Differences between Program Macros, CLISTs, and REXX
EXECs

Program macros have special characteristics that you should consider before
coding:
v Variables are not self-defining in program macros, as they are in CLISTs and

REXX EXECs. The VDEFINE, VCOPY, and VREPLACE dialog services must be
called to identify variables looked at or set by the program.

v If you write a REXX EXEC or a program macro that accepts parameter input, the
macro must be aware that the input may be in lowercase. Variable values are
automatically converted to uppercase by the CLIST processor.

v Program macros are not implicitly defined, while CLIST and REXX macros are.
When you use a command name that is not a built-in or previously-defined
primary command, the editor searches the SYSUEXEC, SYSUPROC, ALTLIB,
SYSEXEC, and SYSPROC concatenations (for CLISTs and REXX EXECs) for a
member with the same name. If it exists, it is assumed to be a macro.
No automatic search is done for program macros. Therefore, there are two ways
to tell the editor to run a macro as a program macro. You can precede the name
with an exclamation point (!) if it is less than 8 characters, or you can use the
DEFINE command to define the name as a program macro. Program macros are
treated as ISPF dialogs, and must be made available as load modules in either
the ISPLLIB, STEPLIB, or LINKLST library.

v Program macros can run without being verified as macros; the MACRO
statement can follow calls to dialog services.

v The editor scans edit statements within program macros to do variable
substitution similar to the CLIST processor. Only one level of substitution is
done. This is the default; use the SCAN assignment statement to prevent it.

Passing Parameters in a Program Macro
Program macros process edit commands by using the ISPLINK or ISPEXEC
interface. ISPLNK and ISPEX are the interface names used in FORTRAN and
Pascal programs. Parameters are passed to the ISREDIT service as follows:

CALL ISPLINK ('ISREDIT',length,buffer)

CALL ISPEXEC (length,'ISREDIT command')

where the following definitions apply:

'ISREDIT'
The service name.

length A fullword number indicating the length of the command buffer. When a
zero length is passed, the maximum buffer length is 255 bytes.

Program Macros

96 z/OS V1R2.0 ISPF Edit and Edit Macros

buffer Can contain any edit command that is valid from a macro, typed with the
same syntax used in a CLIST or REXX EXEC.

command
Any PDF edit command that is valid from a macro, typed with the same
syntax used in a CLIST or REXX EXEC.

Program Macro Examples
The following examples show three different methods of coding a FIND command
for a program macro. They are typed using PL/I syntax:

CALL ISPLINK ('ISREDIT',LEN0,'¢FIND XYZ¢')
CALL ISPLINK ('ISREDIT',LEN8,'FIND XYZ')
CALL ISPEXEC (LEN16,'ISREDIT FIND XYZ')

where:

LEN0 A fullword program variable with a value of 0.
LEN8 A fullword program variable with a value of 8.
LEN16

A fullword program variable with a value of 16.

In each of the previous examples, the remainder of the command is typed as a
literal value.

The first two examples use the ISPLINK syntax. In the ISPLINK call, ISREDIT is
passed as the first parameter and is omitted from the command buffer.

The first example uses a special interface. A zero length can be passed, but only
when the command is delimited by a special character. A special character cannot
be an alphanumeric character. If the length is zero and if a valid delimiter is the
first character in the command buffer, a scan of the command is done to find the
next occurrence of that character. The command length is the number of characters
between the two delimiters. Here, the cent sign (¢) is used as a delimiter. When a
zero length is passed, the maximum buffer length is 255 bytes.

In the second example, an explicit length of 8 is used and the command buffer
contains the command without delimiters.

The third example uses the ISPEXEC syntax. This syntax always requires the
length of the command buffer to be passed. The command buffer includes the
ISREDIT prefix, and is typed the same way as a CLIST or REXX command.

Writing Program Macros
When you write a program macro, it can help to first type it as a CLIST or REXX
macro to debug the logic and the command statements. The example that follows
is called SEPLINE, a simple macro that separates each line in a set of data with a
line of dashes. The REXX syntax is shown in Figure 41 on page 98, the PL/I
program is shown in Figure 42 on page 99, and the COBOL program is shown in
Figure 43 on page 100. Notice that a VDEFINE is not required for the variable
SAVE, which is referenced only by the ISPF editor.

Program Macros

Chapter 6. Creating Edit Macros 97

/ * R E X X * /
/ * * /
/ * S E P L I NE s ep a r a t e s l i n e s w i t h a l i n e o f da s h e s . * /
/ * * /
T R ACE
ADDR E S S I S P E X E C
' I S R E D I T MACRO '

' I S R E D I T (S AV E) = U S E R _S T A T E '
' I S R E D I T R E S E T '
' I S R E D I T E XCL UD E - - - - - 1 A L L '
' I S R E D I T D E L E T E A L L X '
L A S T L = 1
L I N E = 0
L I NX = COP I E S (' - ' , 7 0)

L L = L A S T L + 1
DO WH I L E L I N E < L L

' I S R E D I T L I N E _A F T E R ' L I N E ' = (L I NX) '
' I S R E D I T (L A S T L) = L I N E NUM . Z L A S T '
L L = L A S T L + 1
L I N E = L I N E + 2

E ND
' I S R E D I T U S E R _S T A T E = (S AV E) '

E X I T

Figure 41. SEPLINE REXX Macro

Program Macros

98 z/OS V1R2.0 ISPF Edit and Edit Macros

/ * * /
/ * S E P L I NE - E D I T MACRO P ROGR AM T O I N S E R T S E P AR A T OR L I N E S * /
/ * * /
S E P L I N E : P ROC OP T I ON S (MA I N) ;
/ * * /
D E CL AR E * /

L I NE X CHAR (7 0) I N I T ((7 0) ' - ') , / * S E P AR A T OR L I N E - - - * /
L A S T L F I X E D B I N (3 1 , 0) I N I T (0) , / * L A S T L I N E OF T E X T * /
L I NE F I X E D B I N (3 1 , 0) I N I T (0) , / * CUR R E N T L I N E NUMB E R * /
L E N 0 F I X E D B I N (3 1 , 0) I N I T (0) , / * L E NG T H S - 0 * /
L E N 1 F I X E D B I N (3 1 , 0) I N I T (1) , / * L E NG T H S - 1 * /
L E N 4 F I X E D B I N (3 1 , 0) I N I T (4) , / * L E NG T H S - 4 * /
L E N 7 0 F I X E D B I N (3 1 , 0) I N I T (7 0) ; / * L E NG T H S - 7 0 * /

/ * * /
D E CL AR E / * * /

I S P L I NK E N T R Y OP T I ON S (A SM , I N T E R , R E T COD E) ; / * L I NK T O I S P F * /
/ * * /

CA L L I S P L I NK (' VD E F I N E ' , ' (L A S T L) ' , L A S T L , ' F I X E D ' , L E N 4) ;
CA L L I S P L I NK (' VD E F I N E ' , ' (L I N E) ' , L I N E , ' F I X E D ' , L E N 4) ;
CA L L I S P L I NK (' VD E F I N E ' , ' (L I N E X) ' , L I N E X , ' CHAR ' , L E N 7 0) ;

CA L L I S P L I NK (' I S R E D I T ' , L E N 0 , ' ¢ MACRO ¢ ') ;
CA L L I S P L I NK (' I S R E D I T ' , L E N 0 , ' ¢ (S AV E) = U S E R _S T A T E ¢ ') ;
CA L L I S P L I NK (' I S R E D I T ' , L E N 0 , ' ¢ R E S E T ¢ ') ;
CA L L I S P L I NK (' I S R E D I T ' , L E N 0 , ' ¢ E XCL UD E - - - - - - 1 A L L ¢ ') ;
CA L L I S P L I NK (' I S R E D I T ' , L E N 0 , ' ¢ D E L E T E A L L X ¢ ') ;

L A S T L = 1 ;
L I NE = 0 ;

DO WH I L E (L I N E < (L A S T L + 1)) ;
CA L L I S P L I NK (' I S R E D I T ' , L E N 0 , ' ¢ L I N E _A F T E R & L I N E = (L I N E X) ¢ ') ;
CA L L I S P L I NK (' I S R E D I T ' , L E N 0 , ' ¢ (L A S T L) = L I N E NUM . Z L A S T ¢ ') ;
L I NE = L I N E + 2 ;

E ND ;

CA L L I S P L I NK (' I S R E D I T ' , L E N 0 , ' ¢ U S E R _S T A T E = (S AV E) ¢ ') ;

E ND S E P L I N E ;

Figure 42. SEPLINE PL/I Macro

Program Macros

Chapter 6. Creating Edit Macros 99

Running Program Macros
The ISPF editor assumes that any unknown primary command is a macro, and it
also assumes that the macro has been implemented as a CLIST or REXX EXEC.
You can define a macro as a program macro either by entering a DEFINE
command or by prefixing the macro name with an exclamation point (!) when you
type the macro name on the Command line.

If a macro named FINDIT is a CLIST or REXX EXEC macro, for example, you can
run it by typing FINDIT on the Command line and pressing Enter. If it is a program
macro, you can type !FINDIT, or FINDIT if it had previously been defined as a

I D D I V I S I ON .
P ROGR AM - I D . S E P L I N E .
*
* E D I T MACRO P ROGR AM T O I N S E R T S E P AR A T OR L I N E S
*
E NV I RONME N T D I V I S I ON .
DA T A D I V I S I ON .
WOR K I NG - S T OR AGE S E C T I ON .

0 1 L I NE X P I C X (7 0) VA L U E A L L " - " .
* S E P AR A T OR L I N E - - - - - -
0 1 L A S T L P I C 9 (6) VA L U E 0 COMP .
* L A S T L I N E OF T E X T
0 1 L Y NE P I C 9 (6) VA L U E 0 COMP .
* CUR R E N T L I N E NUMB E R

0 1 I S R E D I T P I C X (8) VA L U E " I S R E D I T " .
0 1 VD E F I N E P I C X (8) VA L U E " VD E F I N E " .
0 1 Z L A S T L P I C X (8) VA L U E " (L A S T L) " .
0 1 Z L I N E P I C X (8) VA L U E " (L I N E) " .
0 1 Z L I N E X P I C X (8) VA L U E " (L I N E X) " .
0 1 F I X E D P I C X (8) VA L U E " F I X E D " .
0 1 CHAR P I C X (8) VA L U E " CHAR " .
0 1 L E N 0 P I C 9 (6) VA L U E 0 COMP .
0 1 L E N 4 P I C 9 (6) VA L U E 4 COMP .
0 1 L E N 7 0 P I C 9 (6) VA L U E 7 0 COMP .

0 1 EM1 P I C X (1 0) VA L U E " ¢ MACRO ¢ " .
0 1 EM2 P I C X (2 4) VA L U E " ¢ (S AV E) = U S E R _S T A T E ¢ " .
0 1 EM3 P I C X (1 0) VA L U E " ¢ R E S E T ¢ " .
0 1 EM4 P I C X (2 5) VA L U E " ¢ E XCL UD E - - - - - - 1 A L L 0 " .
0 1 EM5 P I C X (1 8) VA L U E " ¢ D E L E T E A L L X ¢ " .
0 1 EM6 P I C X (3 0) VA L U E " ¢ L I N E _A F T E R & L I N E = (L I N E X) ¢ " .
0 1 EM7 P I C X (2 8) VA L U E " ¢ (L A S T L) = L I N E NUM . Z L A S T ¢ " .
0 1 EM8 P I C X (2 3) VA L U E " ¢ U S E R _S T A T E = (S AV E) ¢ " .
P ROCE D UR E D I V I S I ON .

CA L L " I S P L I NK " U S I NG VD E F I N E Z L A S T L L A S T L F I X E D L E N 4 .
CA L L " I S P L I NK " U S I NG VD E F I N E Z L I N E L Y N E F I X E D L E N 4 .
CA L L " I S P L I NK " U S I NG VD E F I N E Z L I N E X L I N E X CHAR L E N 7 0 .
CA L L " I S P L I NK " U S I NG I S R E D I T L E N 0 EM1 .
CA L L " I S P L I NK " U S I NG I S R E D I T L E N 0 EM2 .
CA L L " I S P L I NK " U S I NG I S R E D I T L E N 0 EM3 .
CA L L " I S P L I NK " U S I NG I S R E D I T L E N 0 EM4 .
CA L L " I S P L I NK " U S I NG I S R E D I T L E N 0 EM5 .

MOV E 1 T O L A S T L .
MOV E 0 T O L Y N E .
P E R F ORM L OOP UN T I L L Y NE I S NO T L E S S T HAN (L A S T L + 1) .
CA L L " I S P L I NK " U S I NG I S R E D I T L E N 0 EM8 .
GOB ACK .

L OOP .
CA L L " I S P L I NK " U S I NG I S R E D I T L E N 0 EM6 .
CA L L " I S P L I NK " U S I NG I S R E D I T L E N 0 EM7 .
ADD 2 T O L Y N E .

Figure 43. SEPLINE COBOL Macro

Program Macros

100 z/OS V1R2.0 ISPF Edit and Edit Macros

program macro by the DEFINE command. The first time you enter a macro with
an exclamation point (!) prefix implicitly defines that macro as a program macro.
Thereafter, you can omit the prefix.

To use the DEFINE command to define a program as a macro, type:
Command ===> DEFINE name PGM MACRO

and press Enter. The operands can be typed in either order. The following, for
example, is also valid:
Command ===> DEFINE name MACRO PGM

Using Commands in Edit Macros
You can use most primary commands in an edit macro if you precede it with
ISREDIT. Table 6 on page 298 shows the macro commands available to use. There
are differences, though, between entering a command on the Command line and
processing the same command in a macro as one of a series:
v When you enter a command on the Command line, the result of the command is

displayed in either an informational or an error message. If you process the
same command in a macro, messages are not displayed, and the lines actually
displayed may be different from a command entered on the Command line.

v When you issue a series of commands as a macro, the display does not change
with each command. The lines displayed are the end result of the macro
running, not the individual commands.

v Some commands have additional operands permitted in a macro that cannot be
used interactively.

Besides these differences, there are certain guidelines to remember when creating
edit macros. The following topics apply to CLIST, REXX, and program macros.

Naming Edit Macros
Edit macro names can be any valid CLIST, REXX, or program name. Using the
DEFINE ALIAS command, you can assign command names for running the edit
macros that are different from the actual name.

When choosing names and aliases, avoid defining names that might conflict with
the DEFINE command operands and their abbreviations. You can do this by
implicitly defining the macros: precede program macros with an exclamation point
(!); do not use explicit definitions for CLIST or REXX macros.

Variables
Variables function in edit macros the same way they do in CLISTs and REXX
EXECs. The only exceptions are dialog variables—variables that communicate with
ISPF and the PDF component—which can only have names from 1 to 8 characters
in length. The following presents a brief introduction on using variables; for more
detailed information on variables in CLISTs, refer to TSO Extensions CLISTs. For
information on variables in REXX EXECs, refer to TSO/E Version 2 REXX Reference
and TSO/E Version 2 REXX User’s Guide.

When coding macros in CLIST or REXX, remember that all ISREDIT statements are
processed for variable substitution before the editor sees the statements. Enclose
the variables in parentheses when variable substitution should not occur, such as
in cases when ISREDIT statements expect a variable name and not its value. For
CLIST variables, omit the ampersand; for REXX variables, use quotes.

Program Macros

Chapter 6. Creating Edit Macros 101

Variable Substitution
Scan mode controls the automatic replacement of variables in command lines
passed to the editor. Use the SCAN assignment statement either to set the current
value of scan mode (for variable substitution), or to retrieve the current value of
scan mode and place it in a variable.

When scan mode is on, command lines are scanned for ampersands (&). If an
ampersand followed by a non-blank character is found, the name following the
ampersand (ended by a blank or period) is assumed to be a dialog variable name,
such as ‘&NAME’. or ‘&NAME’; the value from the variable pool is substituted in
the command for the variable name before the command is processed. The period
after the variable allows concatenation of the variable value without an intervening
blank delimiter. Remember this when using program macros that do not have the
CLIST processor to substitute variable values.

Character Conversion
A CLIST automatically converts all character strings to uppercase before passing
them to the editor. Therefore, if you want an edit macro command or assignment
statement that you process from a CLIST to find a character string in lowercase,
you must precede the command or statement with the TSO CONTROL ASIS
statement. This statement passes lowercase characters to the editor.

Edit Assignment Statements
You use edit assignment statements to communicate between macros and the
editor. An assignment statement consists of two parts, values and keyphrases, which
are separated by an equal sign. The value segment represents data that is in the
macro, and the keyphrase segment represents data in the editor. You can use
assignment statements to pass data from the edit macro to the editor, or to transfer
data from the editor to the edit macro.

Data is always transferred from the right-hand side of the equal sign in an
assignment statement to the left side. Therefore, if the keyphrase is on the right,
data known to the editor is put into CLIST or REXX variables on the left. In this
situation, the yyy would be a keyphrase, and the xxx would be the value.

CLIST Statement REXX Statements

ISREDIT xxx = yyy
ADDRESS ISPEXEC
'ISREDIT xxx = yyy'

Value
The value part of an edit macro assignment statement can be one of the following:
v A literal character string can be one of the following:

Simple string
Any series of characters not enclosed within quotes (either ' or "),
parentheses, or less-than (<) and greater-than signs (>), and not
containing any embedded blanks or commas.

Delimited string
Any string starting and ending with a quote (either ' or "), but not
containing embedded quotes. The delimiting quotes are not considered
to be part of the data.

v A dialog variable name enclosed in parentheses (varname). If the dialog variable
name is on the right, the entire contents of the variable are considered part of

Using Commands in Edit Macros

102 z/OS V1R2.0 ISPF Edit and Edit Macros

the data, including any quotes, apostrophes, blanks, commas, or other special
characters. If the dialog variable name is on the left, its content is totally
replaced.

Notes:

1. In the CLIST environment, the CLIST variable pool and the dialog function
variable pool are merged. Therefore, variables in parentheses are the same as
ampersand variables, except that the editor does the symbolic substitution
rather than the CLIST processor.

2. In the REXX environment, the REXX variable pool and the dialog function
variable pool are also merged. Therefore, quoted variable names in
parentheses are the same as unquoted variable names, except that the editor
does the symbolic substitution rather than the REXX processor.

3. In a program macro, you must use the VDEFINE service for any variables
that are passed to the editor.

Keyphrase
A keyphrase is either a single keyword, or a keyword followed by a line number
or label. The keyphrase can be either a single-valued keyphrase or a double-valued
keyphrase.

Keyphrase Syntax: Single-valued keyphrases can have the following syntax:
ISREDIT keyphrase = keyphrase
ISREDIT keyphrase = value
ISREDIT keyphrase = keyphrase + value
ISREDIT keyphrase = value + value

Double-valued keyphrases can have the following syntax:
ISREDIT (varname,varname) = keyphrase
ISREDIT keyphrase = value-pair

where value-pair is one of the following:
v Two literals, which can be separated by a comma or blank. For examples:

CLIST Statements REXX Statements

ISREDIT CURSOR = 1,40
ISREDIT CURSOR = 1 40

ADDRESS ISPEXEC
'ISREDIT CURSOR = 1,40'
'ISREDIT CURSOR = 1 40'

Apostrophes or quotes cannot be used when specifying two numeric values. All
of the following, for example, are incorrect:

CLIST Statements REXX Statements

ISREDIT CURSOR = '1','40'
ISREDIT CURSOR = '1,40'

ADDRESS ISPEXEC
"ISREDIT CURSOR = '1','40'"
"ISREDIT CURSOR = '1,40'"

v Two variable names enclosed in parentheses and separated by a comma or
blank, where each variable contains a single value:
(varname,varname) or (varname varname)

In any edit assignment statement containing a two-valued keyphrase, either of the
variables or values in a pair can be omitted. The general syntax then becomes:

Using Commands in Edit Macros

Chapter 6. Creating Edit Macros 103

ISREDIT (varname) = keyphrase
ISREDIT keyphrase = single-value
ISREDIT (,varname) = keyphrase
ISREDIT keyphrase = ,single-value

Note: Even though you can use blanks instead of commas to separate paired
variables or values, you must use a leading comma whenever the first
variable or value has been omitted.

Overlays and Templates
The transfer of information from one side of the equal sign to the other can involve
combining several variables or values. This transfer is called an overlay. When you
perform overlays, there are certain guidelines to remember.

When two values (or a keyphrase and a value) are on one side of an equal sign
and separated by a plus sign (+), only non-blank characters in the value on the
right overlay corresponding positions in the value on the left. For example:

CLIST Statements

ISREDIT LINE .ZCSR = LINE + '//'
ISREDIT MASKLINE = MASKLINE + <40 '&STR(/*)' 70 '&STR(*/)'>

REXX Statements

ADDRESS ISPEXEC
"ISREDIT LINE .ZCSR = LINE + '//'"
"ISREDIT MASKLINE = MASKLINE + <40 '/*' 70 '*/'>"

The first example causes two slashes to replace the first two column positions of
the current line (the line containing the cursor). The remainder of the line is
unchanged. The second example uses a template to cause columns 40-41 of the
current mask line to be replaced with /* and columns 70-71 to be replaced with */.
Again, remember that the template replaces the corresponding positions on the left
only if those left positions are blank. The template shown in the preceding example
has the form:
<col-1 literal-1 col-2 literal-2 ... >

It can be designed with col-1 and col-2 indicating a starting column position, and
literal-1 and literal-2 indicating the data to start in that column. The entire template
is delimited with less-than (<) and greater-than (>) signs. A template can be
designed by using variable names (enclosed in parentheses) for either col-1, col-2,
literal-1, literal-2, or for all four. All of the following forms are valid:
<(colvar-1) (datavar-1) (colvar-2) (datavar-2) ... >
<(colvar-1,datavar-1) (colvar-2,datavar-2) ... >
<(colvar-1) literal-1 col-2 (datavar-2) ... >

Using Edit Assignment Statements
You can use an assignment statement to pass edit parameters to a macro or to
allow a macro to set an edit parameter. If the edit parameter keyphrase is on the
right of the assignment statement, the edit parameter is passed to the macro. If the
edit parameter keyphrase is on the left of the assignment statement, the edit
parameter is changed to the value on the right. In the following assignment
statement, the edit parameter keyphrase is CAPS. The editor assigns the current
CAPS edit mode status (ON or OFF) to the variable CAPMODE.

CLIST Statement REXX Statements

ISREDIT (CAPMODE) = CAPS
ADDRESS ISPEXEC
'ISREDIT (CAPMODE) = CAPS'

Using Commands in Edit Macros

104 z/OS V1R2.0 ISPF Edit and Edit Macros

In the preceding example statements, the parentheses around CAPMODE indicate
to the ISPF editor that the enclosed name is the name of a symbolic variable. If the
name happened to be preceded with an ampersand (&), rather than enclosed in
parentheses, the CLIST processor would replace the name of the variable with its
actual value, and the editor would not see the name. In a REXX statement, the
variable name must be within quotes so that the name, not the value, is passed.
Only names with 8 or fewer characters are allowed by the ISPF editor.

When the editor finds a variable name in parentheses in a position where a value
is required, it substitutes the value assigned to that variable. In the following
examples the edit macro sets the edit CAPS mode:

CLIST Statements REXX Statements

ISREDIT CAPS = ON
ISREDIT CAPS = (CAPMODE)
ISREDIT CAPS = &CAPMODE

ADDRESS ISPEXEC
'ISREDIT CAPS = ON'
'ISREDIT CAPS = (CAPMODE)'
'ISREDIT CAPS = 'capmode

The CLIST and REXX command processors replace the variable CAPMODE with
its assigned value before the ISPF editor processes the statement. This makes the
last statement equivalent to the first statement; in this case, the variable has a value
of ON.

The second statement differs in that the editor receives the variable name and
retrieves its value from the dialog variable pool.

Passing Values
Some information can best be passed back and forth between the editor and the
macro in pairs. The following examples show assignment statements that pass two
values:

CLIST Statements REXX Statements

ISREDIT (LB,RB) = BOUNDS
ISREDIT BOUNDS = (LB,RB)

ADDRESS ISPEXEC
'ISREDIT (LB,RB) = BOUNDS'
'ISREDIT BOUNDS = (LB,RB)'

In the first statement, the current left and right boundaries are stored into the
variables LB (LEFTBND) and RB (RIGHTBND). In the second statement, the values
from the variables LB and RB are used to change the current boundaries.

For more information on which edit macro commands take one variable and which
take two, see Chapter 11. Edit Macro Commands and Assignment Statements.

Manipulating Data With Edit Assignment Statements
You can use assignment statements to obtain, replace, or add data being edited.

To copy a line, use:

CLIST Statement REXX Statements

ISREDIT LINE_AFTER 5 = LINE 2
ADDRESS ISPEXEC
'ISREDIT LINE_AFTER 5 = LINE 2'

To copy line 1 from the data set into the variable LINEDATA, use:

CLIST Statement REXX Statements

ISREDIT (LINEDATA) = LINE 1
ADDRESS ISPEXEC
'ISREDIT (LINEDATA) = LINE 1'

Using Commands in Edit Macros

Chapter 6. Creating Edit Macros 105

To replace the first line in the data set, using the data from the variable
LINEDATA, use:

CLIST Statement REXX Statements

ISREDIT LINE 1 = (LINEDATA)
ADDRESS ISPEXEC
'ISREDIT LINE 1 = (LINEDATA)'

To add a new line after line 1 in the data set using the variable NEWDATA, use:

CLIST Statement REXX Statements

ISREDIT LINE_AFTER 1 = (NEWDATA)
ADDRESS ISPEXEC
'ISREDIT LINE_AFTER 1 = (NEWDATA)'

Differences Between Edit, CLIST, and REXX Assignment
Statements
Note the following differences between edit, CLIST, and REXX assignment
statements:
v Edit assignment statements are preceded by ISREDIT. CLIST assignment

statements are preceded by SET. If the address isredit command is in effect, edit
assignment statements within a REXX exec do not need to be preceded by
ISREDIT.

v In edit assignment statements, a keyphrase must appear on either the left or
right side of the equal sign. A keyphrase is either a single keyword, or a
keyword followed by a line number or label. See “Keyphrase” on page 103 if
you need more information.

v When coding edit assignment statements, variable names to be passed to the
editor are enclosed in parentheses so that the PDF component is passed the
name of the variable, not its value. Sometimes two variable names may appear
within the parentheses.

v Arithmetic expressions are not allowed in an edit assignment statement, but in
certain cases a plus sign (+) can be used to show partial overlay of a line. See
“Overlays and Templates” on page 104 if you need more information.

Performing Line Command Functions
You cannot issue line commands directly from an edit macro. For example, you
cannot use the M (move) line command within an edit macro.

However, you can perform most of the functions provided by line commands by
writing an edit macro. By using edit assignment statements or by issuing primary
commands, you can perform functions such as move, copy, or repeat. For example,
if you want to move a line, you can assign the line to a CLIST or REXX variable,
delete the original line using the DELETE command, and assign the variable to a
new line in the data.

Some commands can be processed only from within a macro. These commands
provide functions done with line commands from the keyboard. Table 3 identifies
the commands, the corresponding line commands, and the functions performed.

Table 3. Edit Macro Commands Corresponding to Line Commands

Edit Macro Statement Corresponding Line
Command

Function

INSERT I Inserts temporary lines

Using Commands in Edit Macros

106 z/OS V1R2.0 ISPF Edit and Edit Macros

Table 3. Edit Macro Commands Corresponding to Line Commands (continued)

Edit Macro Statement Corresponding Line
Command

Function

SHIFT ((Shifts columns left

SHIFT)) Shifts columns right

SHIFT < < Shifts data left

SHIFT > > Shifts data right

TENTER TE Starts text entry mode

TFLOW TF Performs text flow

TSPLIT TS Performs text split

For example:

CLIST Statement REXX Statements

ISREDIT TFLOW 1
ADDRESS ISPEXEC
'ISREDIT TFLOW 1'

causes the paragraph starting on line 1 to be flowed in the same way as a TF (text
flow) line command would if entered on the first line.

For more information on line command functions in edit macros, see Chapter 11.
Edit Macro Commands and Assignment Statements.

Parameters
If you want to supply information to a macro as parameters, you must identify
these parameters on the ISREDIT MACRO statement by enclosing them in
parentheses. For example, if you have the following macro command in an edit
macro named FIXIT:

CLIST Statement REXX Statements

ISREDIT MACRO (MEMNAM)
ADDRESS ISPEXEC
'ISREDIT MACRO (MEMNAM)'

when you enter:
Command ====> FIXIT ABCD

the value ABCD is assigned to the variable MEMNAM.

Passing Parameters to a Macro
A parameter can be either a simple string or a quoted string. It can be passed by
using the standard method of putting variables into shared and profile pools (use
VPUT in dialogs and VGET in initial macros). This method is best suited to
parameters passed from one dialog to another, as in an edit macro.

You can enter parameters along with an edit macro name as a primary command
by using the MACRO command. This command allows you to identify the names
of one or more variables to contain any passed parameters.

It is an error to enter parameter values for a macro without parameter variables. If
you make this mistake, the editor displays a message. It is not an error if you

Using Commands in Edit Macros

Chapter 6. Creating Edit Macros 107

supply more or fewer parameters than the number of variables that are included
on the MACRO command. When you are writing a macro, check for omissions and
the order of parameters.

Multiple parameters are placed into one or more variables based on the number of
variables specified in the MACRO command. If you include more than one
variable name, the editor stores the parameters in order (the first parameter in the
first variable, the second in the second, and so on). Note that assignment to
variables is by position only.

If there are more parameters entered than there are variables available, the editor
stores the remaining parameters as 1 character string in the last variable. If you
include only one variable name on the MACRO command, that variable contains
all the parameters entered with the macro name. If there are more variable names
than parameters, the unused variables are set to nulls.

Multiple parameters are separated by a blank or comma, or a quoted string that is
separated by a blank or comma. Quotes can be single (') or double ("). If you want
your FIXIT macro to accept two parameters, for example, you can include the
following command:

CLIST Statement REXX Statements

ISREDIT MACRO (PARM1,PARM2,REST)
ADDRESS ISPEXEC
'ISREDIT MACRO (PARM1,PARM2,REST)'

This means that if you enter:
Command ====> FIXIT GOOD BAD AND UGLY

variable PARM1 is assigned the value GOOD, PARM2 is assigned the value BAD, and
REST is assigned the value AND UGLY.

If the parameters passed were GOOD BAD, variable REST would be null. Also, if the
parameters are enclosed in quotation marks, such as:
Command ====> FIXIT 'GOOD BAD' 'AND UGLY'

PARM1 would be set to GOOD BAD, PARM2 would be set to AND UGLY, and REST
would be null.

For another example, see the TRYIT macro (Figure 46 on page 122). If the MACRO
statement contains two variables (ISREDIT MACRO (COMMAND,PARM)), entering:
Command ===> TRYIT RESET

sets the variables Command to RESET and PARM to null. Conversely, the following
command:
Command ===> TRYIT FIND A

sets Command to FIND and PARM to A. To find out what was actually typed on the
command line, a macro may examine the variable ZEDITCMD, which is in the
shared variable pool. ZEDITCMD is a character variable, the length if which
depends on the length of the command entered. Therefore, you should either
VDEFINE ZEDITCMD to be sufficiently large to hold the expected command, or
use the VCOPY service to get the length.

Using Commands in Edit Macros

108 z/OS V1R2.0 ISPF Edit and Edit Macros

Using Edit macros in Batch
You can run PDF edit macros in batch by submitting JCL which allocates all of the
necessary ISPF libraries (refer to ISPF Dialog Developer’s Guide and Reference), and
runs a command which calls the EDIT service with an initial macro. This initial
macro can do anything that can be done by an initial macro in an interactive
session. However, in batch, the macro should end with an ISREDIT END or
ISREDIT CANCEL statement. These statements insure that no attempt is made to
display the edit screen in batch.

A simple initial macro to change strings in batch might look like the following:
ISREDIT MACRO
ISREDIT CHANGE JANUARY FEBRUARY ALL
ISREDIT END

Edit Macro Messages
You can display messages from an edit macro the same way you do from an ISPF
dialog.
v Use SETMSG, which causes the message to appear on whatever panel is

displayed next.
v Use DISPLAY with the MSG keyword. This is useful if the macro displays

panels of its own.

PDF provides three generic messages for use in dialogs where you want to
generate the message text or when you do not want a separate message library.
ISRZ000 '&ZEDSMSG' .ALARM = NO .HELP = ISR2MACR
'&ZEDLMSG'

ISRZ001 '&ZEDSMSG' .ALARM = YES .HELP = ISR2MACR
'&ZEDLMSG'
ISRZ002 '&ZERRSM' .ALARM = &ZERRALRM .HELP = &ZERRHM
'&ZERRLM'

For example, if you want your macro to sound an alarm, and to issue the short
message INVALID PARAMETER and the long message PARAMETER MUST BE 4 DIGITS,
use the following statements:

CLIST Statements

SET &ZEDSMSG = &STR(INVALID PARAMETER)
SET &ZEDLMSG = &STR(PARAMETER MUST BE 4 DIGITS)
ISPEXEC SETMSG MSG(ISRZ001)

REXX Statements

ADDRESS ISPEXEC
zedsmsg = 'Invalid Parameter'
zedlmsg = 'Parameter must be 4 digits'
'SETMSG MSG(ISRZ001)'

Note: ZEDLMSG only displays when you enter the HELP command.

Macro Levels
Each macro operates on a separate and unique level. A person at the keyboard
always operates at level 0. If that person starts a macro, it operates at level 1; the
macro started by a level-1 macro operates at level 2, and so on. The level is the
degree of macro nesting. Edit macros are primary commands; thus, nested macros
are started by prefixing them with ISREDIT.

Using Commands in Edit Macros

Chapter 6. Creating Edit Macros 109

A macro can determine its own level with the following assignment statement:
ISREDIT (varname) = MACRO_LEVEL

The current level number is stored in the specified variable. ISPF supports up to
255 levels of macro nesting.

Labels in Edit Macros
A label is an alphabetic character string used to name lines. It is especially useful
for keeping track of a line whose relative line number may change because labels
remain set on a line even when relative line numbers change. The following special
labels are automatically assigned by the editor. A label must begin with a period (.)
and be followed by no more than 8 alphabetic characters, the first of which cannot
be Z. No special characters or numeric characters are allowed.

The special labels that are automatically assigned by the editor all begin with the
letter Z. Labels beginning with Z are reserved for editor use only.

The editor-assigned labels are:

.ZCSR The data line on which the cursor is currently positioned.

.ZFIRST The first data line (same as relative line number 1). Can be
abbreviated .ZF.

.ZLAST The last data line. Can be abbreviated .ZL.

.ZFRANGE The first line in a range specified by you.

.ZLRANGE The last line in a range specified by you.

.ZDEST The destination line specified by you.

Note: Unlike other labels, .ZCSR, .ZFIRST, and .ZLAST do not stay with the same
line. Label .ZCSR stays with the cursor, and labels .ZFIRST and .ZLAST
point to the current first and last lines, respectively.

Using Labels
In a macro, you can assign a label to a line by using the LABEL assignment
statement. For example:

CLIST Statements REXX Statements

SET &LNUM = 10
ISREDIT LABEL &LNUM = .HERE

ADDRESS ISPEXEC
lnum = 10
'ISREDIT LABEL' lnum '= .HERE'

This assigns the label .HERE to the line whose relative line number is contained in
variable LNUM (line 10 here). The .HERE label allows the macro to keep track of a
line whose relative line number may change. When the macro finishes running, the
.HERE label is removed.

Labels can be used as part of a keyphrase instead of a line number. For example:

CLIST Statements REXX Statements

ISREDIT LINE .NEXT = (DATAVAR)
ISREDIT LINE_AFTER .XYZ = (DATAVAR)

ADDRESS ISPEXEC
'ISREDIT LINE .NEXT = (DATAVAR)'
'ISREDIT LINE_AFTER .XYZ = (DATAVAR)'

The first example stores new data into the line that currently has the label .NEXT.
The second example creates a new line after the line whose label is .XYZ, and
stores data into the new line.

Using Commands in Edit Macros

110 z/OS V1R2.0 ISPF Edit and Edit Macros

A macro can determine if a label exists. Using the LINENUM assignment
statement, you can obtain the current relative line number of a labeled line. If the
label does not exist, the return code (&LASTCC for CLIST or RC for REXX) is 8.
For example:

CLIST Statements REXX Statements

ISREDIT (LNUM2) = LINENUM .ABC
IF &LASTCC = 8 THEN WRITE NO .ABC LABEL

ADDRESS ISPEXEC
'ISREDIT (LNUM2) = LINENUM .ABC'
IF RC = 8 THEN SAY 'No .ABC label'

This example stores the relative line number of the line with label .ABC into
variable LNUM2 and tests to see if that label did exist.

Labels have a variety of uses. For example, because both the FIND and SEEK
commands position the cursor at the search string after the macro has been started,
you may want to assign the data from the line on which the cursor is positioned to
the variable CSRDATA. To do so, use the following statement:

CLIST Statements REXX Statements

ISREDIT FIND 'IT'
ISREDIT (CSRDATA) = LINE .ZCSR

ADDRESS ISPEXEC
'ISREDIT FIND IT'
'ISREDIT (CSRDATA) = LINE .ZCSR'

The label .ZCSR names the line in which the cursor is positioned. The .ZCSR label is
moved to a new line when one of the following commands moves the cursor:
FIND, CHANGE, SEEK, EXCLUDE, TSPLIT or CURSOR. The labels .ZFIRST and
.ZLAST can also move when data is added or deleted.

If you assign a labeled line a new label that is blank, the previous label becomes
unassigned (if both labels are at the same level). For example:

CLIST Statement REXX Statements

ISREDIT LABEL .HERE = ' '
ADDRESS ISPEXEC
"ISREDIT LABEL .HERE = ' '"

removes the label from the line.

If a label in use is assigned to another line, the label is moved from the original
line to the new line (if the new assignment is at the same level as the original).

Referring to Labels
A nested macro can refer to all labels assigned by higher-level macros and to labels
that you assign. When a macro assigns labels, they are associated by default with
the assigning macro level. The labels are automatically removed when the macro
finishes running. The labels belong to the level at which they are assigned and can
have the same name as the labels at other levels without any conflict.

When a macro ends, the labels at the current nesting level are deleted. To set a
label for the next higher level, the macro can issue the MACRO_LEVEL assignment
statement to obtain the current level and decrease the level by 1.

A macro can determine the level of a label with the LABEL assignment statement,
as shown in the following syntax:
ISREDIT (varname1,varname2) = LABEL lptr

The label assigned to the referenced line is stored in the first variable and its level
is stored in the second variable. If a label is not assigned to the line, a blank is
stored in both variables.

Using Commands in Edit Macros

Chapter 6. Creating Edit Macros 111

Passing Labels
You can create a label at any level above its current level by explicitly stating the
level:
ISREDIT LABEL lptr = label [level]

Here, if the label previously existed at the explicitly specified level, its old
definition is lost. A label assigned at a higher level remains after the macro ends
and is available until the level at which it was assigned ends or the label is
explicitly removed.

If a macro sets a label without indicating a level, or if its value is equal to or
greater than the level at which the macro is running, the label is set at the macro
level that is currently in control and does not affect any labels set in a higher level.

If a macro queries a label without specifying a level, or uses the label as a line
pointer, the search for the label starts at the current macro level and goes up, level
by level, until the label defined closest to the current level is found.

If you specify a level parameter that is outside the currently active levels, it is
adjusted as follows: a value less than zero is set to zero; a value greater than the
current nesting level is set to the current nesting level. This means that a
higher-level macro cannot set a label at the level of the macro that it is going to
start.

Referring to Data Lines
You can refer to data lines either by a relative line number or by a symbolic label.
Note that special lines (MASK lines, TABS lines, COLS lines, BOUNDS lines, MSG
lines, and others) are not considered data lines. You cannot assign labels to them,
and they do not have relative line numbers. Also, you cannot directly reference
these lines in a macro, even though they are displayed. Excluded lines are
regarded as data lines.

Relative line numbers are not affected by sequence numbers in the data, nor are
they affected by the current setting of number mode. The first line of data is
always treated as line number 1, the next line is line number 2, and so on. The TOP
OF DATA line is considered line number 0.

When you insert or delete lines, the lines that follow change relative line numbers.
If you insert a new line after line 3, for example, it becomes relative line 4 and
what was relative line 4 becomes relative line 5, and so on. Similarly, if line 7 is
deleted, the line that was relative line 8 becomes relative line 7, and so on.

Referring to Column Positions
Column positions in edit macros are not the same as they appear on the panel;
they refer only to the editable portions of the data. When number mode is on,
sequence numbers are not part of the data, and thus are not editable. For example,
if NUMBER COBOL ON mode is in effect, the first six positions of each line contain the
sequence number. The first data character is in position 7, which is considered
relative column 1. When number mode is off, the line number portion is editable,
so here position 1 becomes column 1 and position 7 becomes column 7. These are
not the column values displayed on the edit panel. This discrepancy can influence
the use of column numbers as parameters from the keyboard. Column numbers
must be converted according to number mode. See “Edit Boundaries” on page 26
for the conversions.

Using Commands in Edit Macros

112 z/OS V1R2.0 ISPF Edit and Edit Macros

If your macro must access the sequence numbers as data, include statements that
save the current number mode, set number mode off, and then restore the original
number mode.

When a macro retrieves the current cursor position, a relative column number of
zero is returned if the cursor is outside the data portion of the line. When a macro
sets the cursor column to zero, the cursor is placed in the Line Command field on
the left side of the designated line.

Defining Macros
You can use DEFINE to give macros names that are different from their data set
names, make aliases for built-in edit commands, identify macros as program
macros, or set a command as disabled. DEFINE commands are usually issued in
an initial macro.

For more information, refer to the description of the DEFINE command in
Chapter 11. Edit Macro Commands and Assignment Statements.

Defining an Alias
To establish an alias or alternate name for a primary command, enter a DEFINE
followed by the new name, the ALIAS operand, and then the original command
name. For example, the following command:
Command ===> DEFINE FILE ALIAS SAVE

establishes FILE as an alias for SAVE, allowing you to enter FILE to save the data
currently being edited instead of SAVE.

Resetting Definitions
To reset the last definition for a command and return the command to its previous
status, use the DEFINE command with the RESET operand. For example, having
established FILE as an alias for SAVE, you can enter:
Command ===> DEFINE FILE RESET

to cause FILE to be flagged as an invalid command. When defining a command as
DISABLED, you cannot reset the disabled function.

Replacing Built-In Commands
To replace an existing edit command, with a macro, you also use DEFINE. For
example:

CLIST Statement REXX Statements

ISREDIT DEFINE FIND ALIAS MYFIND
ADDRESS ISPEXEC
'ISREDIT DEFINE FIND ALIAS MYFIND'

This links the command name to an edit macro.

To use the built-in edit command, precede the command with BUILTIN. For
example, to process the built-in FIND command, include the following statement:

CLIST Statement REXX Statements

ISREDIT BUILTIN FIND...
ADDRESS ISPEXEC
'ISREDIT BUILTIN FIND ...'

where the ellipses represent other FIND command operands, such as the search
string.

Using Commands in Edit Macros

Chapter 6. Creating Edit Macros 113

Implicit Definitions
When you or your macro issue a command unknown to the editor, PDF searches
for a CLIST or REXX EXEC with that name. If the editor finds the command, it is
implicitly defines it as an edit macro.

Program macros can be implicitly defined by preceding the name of the macro
with an exclamation point (!). Remember that the name must be 7 characters or
less, excluding the exclamation point. Program macros are similar to ISPF dialogs
in that they must be made available as load modules in either the ISPLLIB,
STEPLIB, or LINKLST library. See “Program Macros” on page 95 for more
information.

Using the PROCESS Command and Operand
The PROCESS command provides a way to alter the usual sequence of events in
an edit macro. It is related to the PROCESS operand on the MACRO command.
PROCESS is the default for the MACRO command. PROCESS specifies that display
data and line commands be processed before another statement is processed. If you
specify NOPROCESS, the editor defers processing the panel data and line
commands until it finds an ISREDIT PROCESS command later in the macro, or
until the macro ends. You can use PROCESS to create a “before-and-after” effect. If
you specify NOPROCESS at the beginning of a macro, edited data appears without
the changes made from the keyboard—creating a “before” effect. Once you specify
PROCESS, changes that were made from the keyboard appear—creating an “after”
effect.

The syntax of the ISREDIT MACRO statement is:
ISREDIT MACRO [(var1[,var2...])] [PROCESS|NOPROCESS]

Specifying NOPROCESS in the Macro Statement
NOPROCESS is useful if you want to process statements before the display data or
line commands are processed. It enables you to perform initial verification of
parameters or capture lines before they are changed from the panel.

It is also useful if you want to include an ISREDIT PROCESS command to specify
whether the macro expects, and handles, line commands that identify either a
range of lines, a destination line, or both. This linking is the method by which the
editor allows a macro command to interact with line commands in the same way
that the built-in MOVE and REPLACE commands do. With the ISREDIT PROCESS
command, the editor can process line commands that you have entered,
performing significant error and consistency checking.

Specifying a Destination
If you include the following process statement in an edit macro:

CLIST Statement REXX Statements

ISREDIT PROCESS DEST
ADDRESS ISPEXEC
'ISREDIT PROCESS DEST'

the macro expects you to specify a destination line. A destination line is always
specified using either A (after) or B (before). The editor sets the dialog variable
.ZDEST to the line preceding the destination. However, if neither A nor B is
specified, .ZDEST is set to the last data line. In this situation, a return code shows
that no destination was specified.

Specifying a Range
If you use the following syntax for a PROCESS macro command in an edit macro:
ISREDIT PROCESS RANGE operand

Using Commands in Edit Macros

114 z/OS V1R2.0 ISPF Edit and Edit Macros

the macro expects to receive a specified range of lines to process. The operand
following the RANGE operand identifies either one or two commands that are to
be accepted. For example, the command PROCESS RANGE Q Z allows the line
commands Q or Z (but not both) to be processed with this macro. The line
commands could take any of the following forms:
v Q or Z, to specify a single line.
v QQ or ZZ, to specify a block of lines. This form is obtained by doubling the last

letter of the single-line command.
v Qn or Zn where n is a number that specifies a series of lines.

After the PROCESS command is completed, the dialog variable .ZFRANGE is
automatically set to the first line of the specified range. The dialog variable
.ZLRANGE is set to the last line of the specified range. These labels can refer to
the same line. If no range is entered, the range defaults to the entire data set. In
this situation, a return code shows that no range was specified.

Two line command names can be specified for PROCESS In this situation, use the
RANGE_CMD assignment statement to return the value of the command entered.
For example, if you issue the following PROCESS command:

CLIST Statement REXX Statements

ISREDIT PROCESS RANGE Z $
ADDRESS ISPEXEC
'ISREDIT PROCESS RANGE Z $'

The RANGE_CMD assignment statement returns either a Z or a $.

The names of line commands that define the range can be 1 to 6 characters, but if
the name is 6 characters long, it cannot be used as a block format command by
doubling the last character. The name can contain any alphabetic or special
character except blank, hyphen (-), apostrophe ('), or period (.). It cannot contain
any numeric characters.

Example
In the example that follows, the NOPROCESS operand on the MACRO command
defers processing of the panel data until the line with the cursor is assigned to a
variable. After the PROCESS command, the line contains any changes that you
made.

CLIST Statements REXX Statements

ISREDIT MACRO NOPROCESS
ISREDIT (BEFORE) = LINE .ZCSR
ISREDIT PROCESS
ISREDIT (AFTER) = LINE .ZCSR
IF &STR(&BEFORE) = &STR(&AFTER) THEN -

...
ELSE -

...

ADDRESS ISPEXEC
'ISREDIT MACRO NOPROCESS'
'ISREDIT (BEFORE) = LINE .ZCSR'
'ISREDIT PROCESS'
'ISREDIT (AFTER) = LINE .ZCSR'
IF BEFORE = AFTER THEN

...
ELSE

...

See “PROCESS—Process Line Commands” on page 374.

Recovery Macros
After a system failure, you might want to restore the command definitions and
aliases that you were using when the system failed, but you do not want to
destroy the profile changes you made during the edit session before the failure.

Using Commands in Edit Macros

Chapter 6. Creating Edit Macros 115

To help to recover after a system failure, you can provide a recovery macro which
can restore command definitions and aliases while not destroying profile changes
made before the failure. The recovery macro, like an initial macro, runs after the
data has been read but before it is displayed. However, the macro is run whenever
the recovery data set is being edited.

You can specify a recovery macro:
v By entering the RMACRO primary command:

Command ===> RMACRO name

v In your initial macro by using the RMACRO assignment statement:
ISREDIT RMACRO = name

where name sets the name of the macro for the edit session. The name operand
is used to specify the name of the macro to be run after a data set has been
recovered.

Note: Recovery macros are only in effect for the duration of a particular Edit
session. They must be specified again each time a new member or data set
is edited.

Return Codes from User-Written Edit Macros
A macro can issue the following return codes. These return codes affect the
Command line and cursor position on the next display of edit data:

0 Shows normal completion of the macro. The cursor position is left as set by
the macro. The Command line is blanked.

1 Shows normal completion of the macro. The cursor is placed on the
Command line and the line is blanked. Use this return code to make it
easy to enter another macro or edit command on the Command line.

4 and 8
Treated by the ISPF editor as return code 0. No special processing is done.

12 and higher
Error return codes. The cursor is placed on the Command line and the
macro command remains. When used with these return codes, the dialog
manager SETMSG service prompts you for an incorrect or omitted
parameter.

Any invocation of a disabled macro command issues a return code of 12.
See the DEFINE command for more information on disabled commands.

20 and higher
Indicate a severe error. The meanings of the severe return codes are:

20 Command syntax error or Dialog service routine error.

24 Macro nesting limit of 255 exceeded (possible endless loop; see the
BUILTIN macro command).

28 Command found either preceding the ISREDIT MACRO command,
or following the ISREDIT END or ISREDIT CANCEL command.

Each command description in Chapter 11. Edit Macro Commands and Assignment
Statements includes a list of return codes that are possible for the command.
Because &LASTCC (CLIST) or RC (REXX) is set for every statement, you must
either test it in the statement immediately following the command that sets it, or
you must save its value in another variable. Use a command such as:

Using Commands in Edit Macros

116 z/OS V1R2.0 ISPF Edit and Edit Macros

SET &RETCODE = &LASTCC

The variable (&RETCODE or RETCODE) can then be tested anywhere in the macro
until it is changed.

Return Codes from PDF Edit Macro Commands
Every CLIST edit macro command sets variable &LASTCC with a return code.
REXX edit macros set variable RC. The return codes range from 0 to 20.

0 Shows normal completion of the command.

2, 4, and 8
Information return codes. They show a special condition that is not
necessarily an error. These return codes can be tested or ignored,
depending on the requirements of the macro.

For some cases of RC=8, the ISPF system variables ZERRSM (short error
message text) and ZERRLM (long error message text) are set. For more
information on ZERRSM and ZERRLM, see ISPF Dialog Developer’s Guide
and Reference

12 and higher
Error return codes. Normally an error return code causes the macro to end
abnormally and an error panel to appear. The error panel shows the kind
of error and lists the statement that caused the error condition.

The ISPF system variables ZERRSM (short error message text) and
ZERRLM (long error message text) are set for error return codes. For more
information on ZERRSM and ZERRLM, see ISPF Dialog Developer’s Guide
and Reference

Often, the only two possible return codes are 0 and 20. The CAPS command is an
example of such a command. Any valid form of CAPS issues a return code of 0.

Selecting Control for Errors
As explained in “Return Codes from PDF Edit Macro Commands”, every edit
macro statement causes variable &LASTCC (CLIST) or RC (REXX) to be set to a
return code. Return codes of 12 or higher are considered errors (except for the
PROCESS edit macro command return code of 12), and the default is to end
macros that issue those return codes.

Sometimes you need to handle errors at the time that they occur. The error is
expected and the edit macro logic can handle the problem. If you want to handle
all errors that might occur in your macro, you can include the following statement:
ISPEXEC CONTROL ERRORS RETURN

If errors occur, control returns to the macro. On the other hand, to return error
handling to the default mode, include the following:
ISPEXEC CONTROL ERRORS CANCEL

If an error occurs, the macro ends.

If you want to do both, you can include any number of ISPEXEC CONTROL
statements in your macro to turn error handling on and off.

Return Codes from User-Written Edit Macros

Chapter 6. Creating Edit Macros 117

Selecting Control for Errors

118 z/OS V1R2.0 ISPF Edit and Edit Macros

Chapter 7. Testing Edit Macros

This chapter documents general-use programming interfaces and associated
guidance information.

This chapter tells you how to include statements in your edit macros to capture
and handle error conditions.

Using the information in the preceding chapters, you should be able to write and
run an edit macro that uses CLIST or REXX logic and processes simple edit
commands. However, even an experienced edit macro writer occasionally includes
a bug that causes a macro to end abnormally (ABEND), or writes a macro that
does not work as expected. When this occurs, you must debug your macro, just as
you would debug any other kind of program you write.

Handling Errors
There are two kinds of errors that you may encounter when you debug
macros—edit command errors and dialog service errors. Both kinds of errors are
controlled by the ISPEXEC CONTROL ERRORS RETURN command. For more
specific information, refer to ISPF User’s Guide

Edit Command Errors
The editor detects edit command errors and displays either an edit macro error
panel with an error message, or a return code. If an edit command error occurs,
the macro ends abnormally with the following results:
v When you are using the ISPF editor with ISPF test mode off, you return to the

edit session.
v If ISPF test mode is on, the PDF component is also in test mode. You can

override the abnormal end and attempt to continue by typing YES on the PDF
edit macro error panel and pressing Enter. If ISPEXEC CONTROL ERRORS
RETURN has been processed, the error panel does not appear, and the macro
automatically continues.

Dialog Service Errors
ISPF detects dialog service errors and displays a message identifying the error with
the statement which caused the error. If a dialog service error occurs, the edit
session ends abnormally with the following results:
v When you are using the PDF component with ISPF test mode off, the ISPF

Primary Option Menu is displayed.
v If you are using the PDF component with ISPF test mode on, you can override

the abnormal end and attempt to continue by typing YES on the ISPF dialog
error panel and pressing Enter. In either case, if ISPEXEC CONTROL ERRORS
RETURN has been processed, no panel appears and the editor sends a return
code instead of ending the dialog.

Note: If you enter ISPF with TEST as an operand, or use Dialog Test (option 7),
ISPF remains in test mode until you end the ISPF session.

© Copyright IBM Corp. 1984, 2001 119

Using CLIST WRITE Statements and REXX SAY Statements
The CLIST WRITE statement and the REXX SAY statement can be valuable tools in
tracking down edit macro problems. A WRITE statement or a SAY statement is
simply a line of text inserted into your macro that creates a message on your
screen while the macro is running. With these statements, you can identify the
position of the statement within the macro, and display the value of variables.

For example, if you are having trouble debugging the CLIST TESTDATA macro
from Figure 35 on page 89, adding some WRITE statements may help locate the
problem (Figure 44).

Remember that the macro TESTDATA creates test data with variations of the same
line by putting ascending numbers 1 through 9 in the data. When WRITE
statements are included in the data, a step-by-step breakdown of the procedure
appears on your screen.

If there are no errors in the TESTDATA macro, the return codes and count appear
on your screen in TSO line mode. Asterisks at the bottom of the screen prompt you
to press Enter and return to ISPF full-screen mode (Figure 45 on page 121).

/ * * /
/ * * /
/ * T E S T DA T A - g e n e r a t e s t e s t da t a
/ * * /
I S R E D I T MACRO

S E T &COUN T = 1 / * I n i t i a l i z e l o op co u n t e r * /
DO WH I L E &COUN T < = 9 / * L o op u p t o 9 t i me s * /

I S R E D I T F I ND ' T E S T - # ' / * S ea r c h f o r ' T E S T - # ' * /
S E T &R E T COD E = & L A S T CC / * S a v e t h e F I ND r e t u r n c o d e * /

WR I T E R E S U L T OF F I ND , RC = &R E T COD E
I F &R E T COD E = 0 T H E N / * I f s t r i n g wa s f o u n d , * / -
DO / * * /

I S R E D I T CHANGE ' # ' ' &COUN T ' / * Ch a n g e # t o a d i g i t a n d * /
S E T &COUN T = &COUN T + 1 / * i n c r eme n t l o op c o u n t e r * /

WR I T E COUN T I S NOW U P T O &COUN T
E ND / * * /

E L S E / * I f s t r i n g i s n o t f o u n d , * / -
S E T &COUN T = 1 0 / * S e t c o u n t e r t o e x i t l o op * /

E ND / * * /
E X I T COD E (0)

Figure 44. TESTDATA Macro with CLIST WRITE Statements

Using CLIST WRITE Statements and REXX SAY Statements

120 z/OS V1R2.0 ISPF Edit and Edit Macros

Using CLIST CONTROL and REXX TRACE Statements
You can display a statement from a macro as it is being interpreted and run. Use
either of the following:
v A CLIST CONTROL statement with the LIST, SYMLIST, or CONLIST operand
v A REXX TRACE statement with the A, I, L, O, R, or S operand.

These statements produce messages on your display screen similar to the WRITE
and SAY statements discussed in the previous section. However, several differences
should be noted:
v For the CLIST CONTROL statement:

– LIST displays commands and subcommands (including ISREDIT statements)
after substitution but before processing. This allows you to see an ISREDIT
statement in the form that the editor sees the statement.

– CONLIST displays a CLIST statement (for example, IF, DO, SET) after
substitution but before processing. You might be able to tell why an IF
statement did not work properly by using CONLIST.

– SYMLIST displays both CLIST and command lines before symbolic
substitution, allowing you to see the lines as written.

Use the NOLIST, NOSYMLIST, and NOCONLIST operands to prevent the
display of statements. Refer to TSO Extensions CLISTs for more details.

v For the REXX TRACE statement:
– The A operand traces all clauses displaying the results of each clause.
– The I operand traces the intermediate results, displaying both the statement

and the results.
– The L operand traces labels in your edit macro.
– The O operand stops, or turns off, the trace.
– The R operand, which is used most often, traces all clauses and expressions.

RESULT OF FIND, RC = 0
COUNT IS NOW UP TO 2
RESULT OF FIND, RC = 0
COUNT IS NOW UP TO 3
RESULT OF FIND, RC = 0
COUNT IS NOW UP TO 4
RESULT OF FIND, RC = 0
COUNT IS NOW UP TO 5
RESULT OF FIND, RC = 0
COUNT IS NOW UP TO 6
RESULT OF FIND, RC = 0
COUNT IS NOW UP TO 7
RESULT OF FIND, RC = 0
COUNT IS NOW UP TO 8
RESULT OF FIND, RC = 0
COUNT IS NOW UP TO 9
RESULT OF FIND, RC = 0
COUNT IS NOW UP TO 10
***_

Figure 45. Results of TESTDATA Macro with CLIST WRITE Statements

Using CLIST CONTROL and REXX TRACE Statements

Chapter 7. Testing Edit Macros 121

– The S operand scans each statement, displaying it without processing it.

Refer to TSO/E Version 2 REXX Reference and TSO/E Version 2 REXX User’s Guide
for more details.

Experimenting with Macro Commands
Use the TRYIT macro (Figure 46) to experiment with edit macros. TRYIT is handy
when you want to see how a command or assignment statement works but do not
actually want to write an entire macro. TRYIT processes the command and issues
return codes that show whether it succeeded. To start the macro, type TRYIT on the
Command line, followed by a command, and press Enter. If you enter TRYIT with
the RESET operand, the variable &COMMAND is set to RESET; if you enter it as
TRYIT FIND A, the variable &COMMAND is set to FIND A.

The TRYIT macro tests both the SEEK and AUTONUM commands (Figure 47 on
page 123). When you run the macro, it displays the return codes from the
commands on your screen (Figure 48 on page 123).

/ * * /
/ * T R Y I T i s a s i mp l e ma c r o f o r t r y i n g o u t ed i t ma c r o * /
/ * s t a t eme n t s
/ * * /
I S R E D I T MACRO (COMMAND)

S E T &R E T COD E = 0 / * I n i t i a l i z e r e t u r n c o d e * /
I F & S T R () = & S T R (&COMMAND) T H E N / * I f n o c omma n d s p e c i f i ed * / -

WR I T E M I S S I NG COMMAND P AR AME T E R / * i n d i c a t e p r ob l em * /
E L S E / * E l s e p a r ame t e r e x i s t s ; * / -

DO / * i n v o k e ed i t comma n d * /
I S R E D I T &COMMAND / * S a v e t h e r e t u r n co d e * /
S E T &R E T COD E = & L A S T CC / * f r om c omma n d i n v o c a t i o n * /
WR I T E &COMMAND R E T UR N COD E I S &R E T COD E / * a n d i n d i ca t e * /

E ND / * i t s v a l u e t o t h e u s e r * /
E X I T COD E (&R E T COD E)

Figure 46. TRYIT Macro

Using CLIST CONTROL and REXX TRACE Statements

122 z/OS V1R2.0 ISPF Edit and Edit Macros

Debugging Edit Macros with ISREMSPY
When you run an edit macro, the editor screen is not displayed until the macro
completes. To view the status of the data being edited during execution of the edit
macro, invoke the program ISREMSPY from within the running macro.

ISREMSPY displays a simulated editor panel in which the data is presented as it
exists at the time ISREMSPY is started. You can also see the cursor location and the

Figure 47. TRYIT Macro - Before Running

ISREDIT SEEK "TEST"
RETURN CODE IS 0

ISREDIT AUTONUM ON
RETURN CODE IS 0

***_

Figure 48. TRYIT Macro - After Running

Experimenting with Macro Commands

Chapter 7. Testing Edit Macros 123

|

|
|
|

|
|

last edit macro command executed. In most cases, the line that has the cursor on it
is indicated by an arrow in the line command area.

Within an ISREMSPY display you can issue the commands RESET and FIND.
RESET restores the display to the current editor state, including scroll and cursor
location. FIND locates a string within the data being display.

FIND does not support all the operands of the FIND command of the real editor; it
only supports the search string as an operand. The string may be in quotes, and
imbedded quotes should not be doubled. Pressing the RFIND key will repeat the
last search. Only the first 256 bytes of each line are searched by the FIND
command.

Because ISREMSPY is a simulated edit session, it may not display precisely as the
editor would. For example, the numbers in the line command area are always
incremented by one, and may not accurately reflect the numbers displayed in the
real edit session. Similarly, there are some cases such as TENTER and INSERT,
where the cursor location may not be correct.

ISREMSPY can be invoked in several ways:
v You can invoke it as a TSO command directly from within an edit macro.

CLIST example:
ISREMSPY

REXX example:
Address TSO 'ISREMSPY'

v You can define a breakpoint for ISREDIT in dialog test (option7.8) and then run
the macro under dialog test (option 7.1). When the breakpoint is triggered, you
can type TSO ISREMSPY to view the current state of the edit data. This
technique can be used to look at edit data during execution of a macro without
having to modify the edit macro source and is particularly useful for debugging
program macros (macros not written in CLIST or REXX).

v You can define ISREMSPY as a program macro using the editor DEFINE
command and then use ISREMSPY as an editor command.

Experimenting with Macro Commands

124 z/OS V1R2.0 ISPF Edit and Edit Macros

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|
|
|
|
|
|

|
|

Chapter 8. Sample Edit Macros

This chapter documents general-use programming interfaces and associated
guidance information.

TEXT Macro
The TEXT macro (Figure 49) initializes the edit profile values and function keys
for text entry. You can enter it from the Command line or use it in an initial macro.
This macro sets F12 to BOX. The BOX macro is described later in this chapter. It
does not otherwise affect the running of the TEXT macro.

The following list explains the logical sections of the TEXT macro:
1. MACRO identifies this CLIST as a macro:

ISREDIT MACRO

2. The commands that follow MACRO set edit profile values; the boundaries are
set to the first and last columns of data:
ISREDIT NUMBER OFF
ISREDIT TABS OFF
ISREDIT NULLS OFF
ISREDIT BOUNDS
ISREDIT CAPS OFF
ISREDIT RECOVERY ON

3. The SET statements save the current value and set ISPF variable &ZPF24 to
BOX:
SET SAVEPF24 = &ZPF24
SET &ZPF24 = BOX

The &ZPF24 variable controls the function of the F12 key (for terminals with 12
function keys) or the F24 key (for terminals with 24 function keys). The BOX

/ * * /
/ * T E X T i n i t i a l i z e s t h e p r o f i l e a n d P F k e y s f o r t e x t wo r k * /
/ * * /
I S R E D I T MACRO / * * /

I S R E D I T NUMB E R OF F / * S e t n umb e r mo d e o f f * /
I S R E D I T T AB S OF F / * S e t t ab s o f f * /
I S R E D I T NU L L S OF F / * S e t n u l l s o f f * /
I S R E D I T BOUND S / * D e f a u l t b o u n d s * /
I S R E D I T CAP S OF F / * S e t c ap s o f f * /
I S R E D I T R E COV E R Y ON / * S e t r e c o v e r y mo d e o n * /

/ * * /
I S P E X E C VGE T (Z P F 2 4) P ROF I L E / * E n s u r e t h i s i s t h e * /

/ * p r o f i l e v a l u e * /
S E T S AV E P F 2 4 = & Z P F 2 4 / * S a v e i t f o r l a t e r * /

/ * r e s t o r a t i o n * /
I S P E X E C VP U T (S AV E P F 2 4) / * b y P F E ND a n d P F CAN * /

S E T & Z P F 2 4 = BOX / * S e t P F 1 2 t o BOX * /
I S P E X E C VP U T (Z P F 2 4) P ROF I L E / * a n d s a v e i n p r o f i l e * /

/ * * /
I S R E D I T D E F I N E E ND A L I A S P F E ND / * Do D E F I NE s t o r e s e t * /
I S R E D I T D E F I N E CANCE L A L I A S P F CAN / * t h e P F k e y a t e x i t * /
I S R E D I T D E F I N E QU I T A L I A S CANCE L / * No t e t h a t QU I T = P F CAN * /

E X I T COD E (0) / * * /

Figure 49. TEXT Macro

© Copyright IBM Corp. 1984, 2001 125

|

|
|
|

|

command is processed when F12 or F24 is pressed. Since no native edit
command exists with the name BOX, PDF searches for a CLIST or REXX EXEC
named BOX.

4. The VPUT service sets the &ZPF24 variable in the profile pool, causing it to
take effect.
ISPEXEC VPUT (ZPF24) PROFILE

5. DEFINE is used to define macros that are to be run when certain edit
commands are entered. For example, because of the first DEFINE command,
the PFEND macro is run when you enter END.
ISREDIT DEFINE END ALIAS PFEND
ISREDIT DEFINE CANCEL ALIAS PFCAN
ISREDIT DEFINE QUIT ALIAS CANCEL

Notice that since QUIT is defined after CANCEL, both QUIT and CANCEL
have become aliases of PFCAN. See “PFCAN Macro” on page 127 to learn
about the PFCAN macro.

6. The EXIT statement sets a return code of 0.
EXIT CODE(0)

To run the TEXT macro, type text on the Command line as shown in Figure 50:

Figure 51 shows how the macro switches the NUMBER and CAPS mode OFF to
prepare for text entry.

Figure 50. TEXT Macro - Before Running

TEXT Macro

126 z/OS V1R2.0 ISPF Edit and Edit Macros

PFCAN Macro
The PFCAN macro listed in Figure 52 cancels an edit session, but first it resets F12,
which was previously defined by the TEXT macro. TEXT defines F12 to start the
BOX macro in Figure 53 on page 128. TEXT and PFCAN can be used in conjunction
to save keystrokes.

The following list explains the logical sections of the PFCAN macro:
1. F12 is reassigned to its previous setting:

Figure 51. TEXT Macro - After Running

/ * P F CAN R e s e t P F 1 2 , wh i c h wa s d e f i n ed b y * /
/ * t h e T E X T ma c r o . * /
I S R E D I T MACRO / * * /

S E T Z P F 2 4 = & S AV E P F 2 4 / * R e s e t P F 1 2 t o i t s * /
I S P E X E C VP U T (Z P F 2 4) P ROF I L E / * d e f a u l t v a l u e * /
I S R E D I T B U I L T I N CANCE L / * Ca n c e l t h e E d i t * /

/ * s e s s i o n * /
E X I T / * * /

Figure 52. PFCAN Macro

PFCAN Macro

Chapter 8. Sample Edit Macros 127

ISREDIT VPUT (ZPF24) PROFILE

2. The native Edit CANCEL command is processed. If BUILTIN did not precede
CANCEL on this statement, PFCAN would issue a CANCEL command that
would cause PFCAN to be called recursively.
ISREDIT BUILTIN CANCEL

BOX Macro
The BOX macro draws a box with its upper left corner at the cursor position. This
macro comes in handy when you want to make a note to yourself or others
reading the data. You can start the BOX macro in one of three ways:
v Type BOX on the Command line as an edit primary command and press Enter.
v Type KEYS on the Command line, press Enter, set a function key to the BOX

macro, and enter the END command.
v Use the TEXT macro, defined earlier, which sets up the function key for BOX

and defines the profile values for text entry.

If you have defined a function key for BOX, position the cursor on a data line
where you want the box drawn. Press the function key that you have defined to
start the BOX macro. After the box is drawn, the cursor is positioned inside, ready
for you to type enough text to fill the box.

If any of the macro commands fail, a warning message appears.

The following list explains the logical sections of the BOX macro:
1. The variables &ROW and &COL are set to the cursor position.

ISREDIT (ROW,COL) = CURSOR

2. The dialog service allows the macro to handle severe errors, allowing a
message to be displayed when the cursor is placed too close to the end of the
data. The LINE assignment statement fails if the row it is setting does not exist.
ISREDIT CONTROL ERRORS RETURN

/ * BOX - D r aw a b o x w i t h i t s u pp e r l e f t co r n e r a t t h e * /
/ * c u r s o r p o s i t i o n * /
/ * * /
I S R E D I T MACRO
I S R E D I T (ROW , COL) = CUR SOR / * Ge t c u r s o r p o s i t i o n * /

/ * * /
I S P E X E C CON T ROL E R ROR S R E T UR N / * No ma c r o e r r o r p a n e l * /

/ * D r aw b o x o v e r * /
/ * e x i s t i n g l i n e s * /
/ * * /

I S R E D I T L I NE &ROW = L I NE + < &COL ' + - - - - - - - - - - - - - - - - + ' >
I S R E D I T L I NE & E VA L (&ROW+ 1) = L I NE + < &COL ' | | ' >
I S R E D I T L I NE & E VA L (&ROW+ 2) = L I NE + < &COL ' | | ' >
I S R E D I T L I NE & E VA L (&ROW+ 3) = L I NE + < &COL ' | | ' >
I S R E D I T L I NE & E VA L (&ROW+ 4) = L I NE + < &COL ' | | ' >
I S R E D I T L I NE & E VA L (&ROW+ 5) = L I NE + < &COL ' + - - - - - - - - - - - - - - - - + ' >

/ * * /
I F &MAXCC > 0 T H E N / * I f e r r o r o c c u r r ed * / -

DO / * wh i l e o v e r l a y i n g * /
S E T Z E D SMSG = & S T R (I NCOMP L E T E BOX) / * l i n e s * /
S E T Z E D L MSG = & S T R (NO T E NOUGH L I NE S / COL UMN S +
T O DR AW COMP L E T E BOX)
I S P E X E C S E TMSG MSG (I S R Z 0 0 1) / * I s s u e e r r o r me s s ag e * /

E ND
S E T &COL = &COL + 2 / * P o s i t i o n c u r s o r * /
S E T &ROW = &ROW + 1 / * w i t h i n t h e b o x * /
I S R E D I T CUR SOR = (ROW , COL) / * * /

E X I T COD E (0)

Figure 53. BOX Macro

PFCAN Macro

128 z/OS V1R2.0 ISPF Edit and Edit Macros

3. The LINE assignment statements overlay existing data on a line with the
characters which form a box. LINE uses a merge format to include the existing
line data and then a template to put the overlaying data at the cursor column
position. The CLIST &EVAL function increments the relative line numbers
before the statement is passed to the editor.
ISREDIT LINE &ROW = LINE + < &COL '+----------------+'>
ISREDIT LINE &EVAL(&ROW+1) = LINE + < &COL '| |'>
ISREDIT LINE &EVAL(&ROW+2) = LINE + < &COL '| |'>
ISREDIT LINE &EVAL(&ROW+3) = LINE + < &COL '| |'>
ISREDIT LINE &EVAL(&ROW+4) = LINE + < &COL '| |'>
ISREDIT LINE &EVAL(&ROW+5) = LINE + < &COL '+----------------+'>

4. The CLIST IF statement checks the &MAXCC variable, and if it is nonzero, calls
the dialog service SETMSG to display a message. &MAXCC is a variable
updated by the CLIST processor to contain the highest condition code.
IF &MAXCC > 0 THEN

5. The message used in SETMSG is one of two messages (ISRZ000 and ISRZ001)
reserved for macro use. Each message uses two variables:
v &ZEDSMSG to set the text for the short message (up to 24 characters) that is

displayed when the macro ends.
v &ZEDLMSG to set the text for the long message that appears when the

HELP command is entered.

Message ISRZ001 sounds the alarm to indicate an error; message ISRZ000 does
not sound the alarm.

DO
SET ZEDSMSG = &STR(INCOMPLETE BOX)
SET ZEDLMSG = &STR(NOT ENOUGH LINES/COLUMNS +
TO DRAW COMPLETE BOX)
ISPEXEC SETMSG MSG(ISRZ001)

END

6. These statements position the cursor within the box to simplify entering text
when the panel is redisplayed.
SET &COL = &COL + 2
SET &ROW = &ROW + 1
ISREDIT CURSOR = (ROW,COL)

The example in Figure 54 shows the cursor placed on line 000009 next to the
number 9 before starting the macro.

BOX Macro

Chapter 8. Sample Edit Macros 129

When you press Enter, a box appears beside the cursor, as shown in Figure 55.

IMBED Macro
The IMBED macro (Figure 56) builds a list of imbed (.im) statements found in the
member that is entered as an operand. The list is created at the end of the member
currently being edited. The imbed statements are indented under a MEMBER
identifier line.

Figure 54. BOX Macro - Before Running

Figure 55. BOX Macro - After Running

BOX Macro

130 z/OS V1R2.0 ISPF Edit and Edit Macros

You can start this macro by editing a member, typing IMBED and the name of the
member that contains the imbed statements as the operand, and pressing Enter.

The following list explains the logical sections of the IMBED macro:
1. Add a line that identifies the member to be searched at the end of IMBED.

The .ZL (or .ZLAST) is always associated with the last line in the data.
ISREDIT LINE_AFTER .ZL = 'MEMBER &MEMBER'

2. Retrieve the line number of the identifier line just added into &LINENBR.
ISREDIT (LINENBR) = LINENUM .ZL

3. Now copy, at the end of IMBED, the member name that was passed as an
input parameter.
ISREDIT COPY AFTER .ZL &MEMBER

4. &NEWLL is set to the new last line number of IMBED.

/ * I MB E D - C r ea t e s a l i s t o f i mb ed s t a t eme n t s * /
/ * * /
I S R E D I T MACRO (MEMB E R) / * Memb e r n ame p a s s ed * /

/ * a s i n p u t * /
I S R E D I T L I NE _A F T E R . Z L = ' MEMB E R &MEMB E R ' / * Add memb e r I D l i n e * /
I S R E D I T (L I NE NB R) = L I NE NUM . Z L / * Ge t l i n e n umb e r * /

/ * * /
I S R E D I T COP Y A F T E R . Z L &MEMB E R / * Cop y memb e r a t e n d * /
I S R E D I T (NEWL L) = L I NE NUM . Z L / * Ge t n ew l a s t l i n e # * /

/ * * /
I F & L I NE NB R = &NEWL L T H E N / * I f n o da t a wa s * / -

E X I T COD E (8) / * cop i ed , t h e n e x i t * /
E L S E / * * /

DO / * * /
I S R E D I T L AB E L & E VA L (& L I NE NB R + 1) / * L ab e l f i r s t l i n e * / -

= . F I R S T / * cop i ed * /
I S R E D I T R E S E T E XCL UD E D / * Ma k e s u r e t h e r e a r e * /

/ * n o p r e v i o u s l y * /
/ * e x c l u d ed l i n e s * /
/ * * /

I S R E D I T E XCL UD E A L L . F I R S T . Z L / * E x c l u d e n ew l y * /
/ * cop i ed l i n e s * /

I S R E D I T F I ND AL L . I M 1 . F I R S T . Z L / * S h ow l i n e s * /
S E T F I NDRC = & L A S T CC / * co n t a i n i n g " . i m " * /

/ * i n co l umn 1 * /
I S R E D I T D E L E T E A L L X . F I R S T . Z L / * D e l e t e a n y l i n e s * /

/ * s t i l l e x c l u d ed * /
I S R E D I T (NEWL L) = L I NE NUM . Z L / * Up da t e l a s t l i n e * /

/ * n umb e r a f t e r d e l e t e * /
I F & F I NDRC = 0 T H E N / * I f " . i m " wa s f o u n d * / -

DO WH I L E (& L I NE NB R < &NEWL L) / * f o r a l l r ema i n i n g * /
/ * cop i ed l i n e s * /

S E T L I NE NB R = & L I NE NB R + 1 / * S h i f t a l l . i m l i n e s * /
I S R E D I T S H I F T & L I NE NB R) 8 / * r i g h t 8 * /

E ND
E ND

E X I T COD E (1) / * P l a c e c u r s o r o n * /
/ * comma n d l i n e * /

Figure 56. IMBED Macro

IMBED Macro

Chapter 8. Sample Edit Macros 131

ISREDIT (NEWLL) = LINENUM .ZL

5. Check to see if any lines were added by the copy. Exit from the macro if no
lines were added.
IF &LINENBR = &NEWLL THEN

EXIT CODE(8)

6. Set the .FIRST label on the first line copied. This label is available only to this
macro; you do not see it.
ISREDIT LABEL &EVAL(&LINENBR + 1) = .FIRST

7. Excluded lines are deleted later. Therefore, make sure that no lines in the data
set are excluded.
ISREDIT RESET EXCLUDED

8. Exclude all lines that were just copied: all the lines in the range .FIRST to .ZL.
ISREDIT EXCLUDE ALL .FIRST .ZL

9. The FIND command is used to find all occurrences of .im starting in column 1
of the copied lines. This shows (unexcludes) the lines to keep. If .im was not
found on any line, &FINDRC will be 4.
ISREDIT FIND ALL .IM 1 .FIRST .ZL
SET FINDRC = &LASTCC

10. All the lines still excluded are now deleted.
ISREDIT DELETE ALL X .FIRST .ZL

11. Obtain the last line number again, because it will have changed if lines were
deleted.
ISREDIT (NEWLL) = LINENUM .ZL

12. If .im lines were found, loop using a column shift to indent them under the
member identifier line. Note that &LINENBR is still associated with the
identifier line.
IF &FINDRC = 0 THEN

DO WHILE (&LINENBR < &NEWLL)
SET LINENBR = &LINENBR + 1
ISREDIT SHIFT &LINENBR) 8

END

LIST is a member with several imbed statements; see Figure 57.

IMBED Macro

132 z/OS V1R2.0 ISPF Edit and Edit Macros

When you run the IMBED macro by typing IMBED LIST on the Command line of
TESTDATA, a list of the imbeds in LIST appears at the end of the data. See
Figure 58.

ALLMBRS Macro
The ALLMBRS macro (Figure 59 on page 134) uses PDF library access services to
determine each member name in the library being edited.

Figure 57. LIST with Imbed Statements

Figure 58. IMBED Macro - After Running

IMBED Macro

Chapter 8. Sample Edit Macros 133

This macro invokes the edit service for each member in the library, except the
member currently being edited, passing a user-specified edit macro on the edit
service invocation. The ALLMBRS macname command, where macname is the name
of the macro to be invoked against each member, starts the service.

This macro can aid in making repetitive changes to all members of a data set, or in
searching all members for a specific string of data.

To start the ALLMBRS macro, edit a member (either new or existing), type
ALLMBRS macname, where macname is the name of the macro you wish to
invoke against each member of the data set, and press enter. For example, if the
name of the macro to be invoked is IMBED, type:

Command ===> ALLMBRS IMBED

/*REXX**/
/* ISPF edit macro to process all members of partitioned data set, */
/* running a second, user-specified, ISPF edit macro against each */
/* member. */
/* */
/* To run: */
/* Enter "ALLMBRS macname" on the command line, where macname is */
/* the macro you want run against each member. */
/***/

'ISREDIT MACRO (NESTMAC)'

/***/
/* Get dataid for data set and issue LMOPEN */
/***/
'ISREDIT (DATA1) = DATAID'
'ISREDIT (CURMEM) = MEMBER'
Address ispexec 'LMOPEN DATAID('data1') OPTION(INPUT)'
member = ' '
lmrc = 0

/***/
/* Loop through all members in the PDS, issuing the EDIT service for */
/* each. The macro specified on the ALLMEMS invocation is passed as */
/* an initial macro on the EDIT service call. */
/***/
Do While lmrc = 0

Address ispexec 'LMMLIST DATAID('data1') OPTION(LIST),
MEMBER(MEMBER) STATS(NO)'

lmrc = rc
If lmrc = 0 & member |= curmem Then

do
Say 'Processing member' member
Address ispexec 'EDIT DATAID('data1') MEMBER('member')

MACRO('nestmac')'
end

End

/***/
/* Free the member list and close the dataid for the PDS. */
/***/
Address ispexec 'LMMLIST DATAID('data1') OPTION(FREE)'
Address ispexec 'LMCLOSE DATAID('data1')'

Exit 0

Figure 59. ALLMBRS Macro

ALLMBRS Macro

134 z/OS V1R2.0 ISPF Edit and Edit Macros

The following list explains the logical sections of the ALLMBRS macro:
1. The MACRO command identifies NESTMAC as the variable to contain the

name of the macro that is passed on the edit service invocation for each
member. If no parameter is passed to ALLMBRS, NESTMAC is blank.

ISREDIT MACRO (NESTMAC)

2. The DATAID assignment statement returns a data ID in the variable DATA1.
The data ID identifies the concatenation of data sets currently being edited.

ISREDIT (DATA1) = DATAID

3. The name of the member currently being edited is returned in CURMEM.
ISREDIT (MEMBER) = CURMEM

4. The data set (or sets) identified by the data ID obtained earlier is opened for
input to allow the LMMLIST service to be called later. No return code
checking is done because it is presumed that if the data set is being edited, it
can be successfully processed by LMOPEN.

Address ispexec 'LMOPEN DATAID('data1') OPTION(INPUT)'

5. The variable to hold the name of the next member to be processed, and the
return code from the LMMLIST service are initialized.

member = ' '
lmrc = 0

6. The exec loops to process all members returned by LMMLIST. Variable LMRC
is set to 4 when the end of the member list is reached, stopping the loop.

Do While lmrc = 0

7. Obtain the next member in the list. If this is the first invocation of LMMLIST,
the first member in the list is returned. The member name is returned in
variable MEMBER, and variable LMRC is set to the return code from
LMMLIST.

Address ispexec 'LMMLIST DATAID('data1') OPTION(LIST),
MEMBER(MEMBER) STATS(NO)'

lmrc = rc

8. If LMMLIST returns a 0, indicating a member name was returned, and if the
member returned is not the member currently being edited, the member is
processed.

If lmrc = 0 Then
do

9. The Rexx SAY statement is used to write line-I/O messages. As the macro
processes each member, the member name appears on the terminal to keep
you informed about what is happening. An alternative to the SAY statement
would be to display a panel showing the member name after issuing the
ISPEXEC CONTROL DISPLAY LOCK service.

Say 'Processing member' member

10. The EDIT service is invoked on the member returned by LMMLIST. The
macro specified on invocation of ALLMBRS is passed as an initial macro on
the edit service.

Address ispexec 'EDIT DATAID('data1') MEMBER('member')
MACRO('nestmac')'

11. When the LMMLIST service returns a non-zero value, the loop is exited and
the cleanup begins. LMMLIST is called to free the member list, and the
LMCLOSE service is called to close the data set or sets associated with the
data ID.

Address ispexec 'LMMLIST DATAID('data1') OPTION(FREE)'
Address ispexec 'LMCLOSE DATAID('data1')'

ALLMBRS Macro

Chapter 8. Sample Edit Macros 135

FINDCHGS Macro
The FINDCHGS macro (Figure 60) identifies the lines most recently changed by
showing only those lines and excluding all others. When no level is passed, the
latest level is assumed. A label range can also be passed to FINDCHGS to limit the
search. This macro relies on the modification level maintained by the editor for
members with numbers and ISPF statistics.

Operands can also be specified. For example, to show lines with level 8 or greater
on a line range:
Command ===> FINDCHGS 8 .FIRST .LAST

The following list explains the logical sections of the FINDCHGS macro:

Figure 60. FINDCHGS Macro

FINDCHGS Macro

136 z/OS V1R2.0 ISPF Edit and Edit Macros

1. FINDCHGS allows three optional parameters to be passed: a search level and
two labels (a label range). If all three are passed, PARMS contains two labels.
ISREDIT MACRO (SEARCH,PARMS)

2. The following statements save user information, number mode and type, last
find string, cursor location, and other profile and status information. Also,
stats mode and the current modification level for parameter checking are
retrieved, and the three-part number type is divided into three variables.
ISREDIT (SAVE) = USER_STATE
ISREDIT (NUMBER, NUMTYPE) = NUMBER
SET SYSDVAL = &NUMTYPE
READDVAL STD COBOL DISPLAY
ISREDIT (STATS) = STATS
ISREDIT (LEVEL) = LEVEL

3. FINDCHGS requires that the modification level be entered first if it is
specified. This check allows the level to default to the current (highest)
modification level. A label range can be specified without a level number;
PARMS is reset to capture both labels.
IF &SEARCH = &STR() | &SUBSTR(1:1,&SEARCH) = &STR(;) THEN -

DO
SET PARMS = &STR(&SEARCH &PARMS)
SET SEARCH = &LEVEL

END

4. Check to see if the member modification level is maintained. If not, issue an
error message and exit the macro.
IF &STATS = OFF | &NUMBER = OFF | &STD = NOSTD THEN -

DO
SET ZEDSMSG = &STR(INVALID DATA)
SET ZEDLMSG = &STR(BOTH NUMBER AND STATS MODE MUST BE ON)
ISPEXEC SETMSG MSG(ISRZ001)
EXIT CODE(8)

END

5. A CLIST DATATYPE function is used to check if the first parameter is valid (a
number). If it is not valid, issue an error message and exit from the macro.
IF &DATATYPE(&SEARCH) = CHAR THEN -

DO
SET ZEDSMSG = &STR(INVALID ARG)
SET ZEDLMSG = &STR(SEARCH STRING MUST BE FIRST)
ISPEXEC SETMSG MSG(ISRZ001)
EXIT CODE(8)

END

6. Now that validity checks have been passed you can set number mode off.
This allows you to treat the number field, which contains the level number, as
data.
ISREDIT NUMBER = OFF

7. Set &COL1 and &COL2 to the columns containing the level numbers.
ISREDIT (RECFM) = RECFM
IF &RECFM = F THEN -

DO
ISREDIT (LRECL) = LRECL
SET COL1 = &LRECL - 1
SET COL2 = &LRECL
END
ELSE DO

SET COL1 = 7
SET COL2 = 8
END

8. Exclude all lines.
ISREDIT EXCLUDE ALL

FINDCHGS Macro

Chapter 8. Sample Edit Macros 137

9. For each level, find all occurrences of the current modification level. If a label
range was specified, it is in the PARMS variable. All lines with matching
levels are excluded.
DO WHILE &SEARCH <= &LEVEL

ISREDIT FIND ALL '&SEARCH' &COL1 &COL2 &PARMS
SEARCH = &SEARCH + 1

END

10. Restore user values, especially number mode.
ISREDIT USER_STATE = (SAVE)

In the example in Figure 61 the data contains lines that you have changed.
When you press Enter, the FINDGHGS macro displays the changed lines and

excludes the others, as shown in Figure 62 on page 139.

Figure 61. FINDCHGS Macro - Before Running

FINDCHGS Macro

138 z/OS V1R2.0 ISPF Edit and Edit Macros

MASKDATA Macro
The MASKDATA macro (Figure 63 on page 140) allows data in the mask line to
overlay lines. It can be used to place a comment area over existing lines in a
member.

Before starting this macro, you must first specify two things: a mask line and the
range of lines it overlays. See “MASKLINE—Set or Query the Mask Line” on
page 362 for information on creating mask lines.

Specify the range of lines by using either an OO or $$ line command. You can use
O, OO, On, or $, $$, $n, where n is the number of lines.

An O line command specifies that mask line data overlays only blanks in the line
data. A $ line command specifies that non-blank mask line data overlays the line
data. Once the mask line and range of lines have been specified, type MASKDATA on
the Command line and press Enter.

Figure 62. FINDCHGS Macro - After Running

MASKDATA Macro

Chapter 8. Sample Edit Macros 139

The following list explains the logical sections of the MASKDATA macro:
1. The NOPROCESS keyword on the MACRO command allows the macro to

control when user input (changes to data and line commands) is processed.
ISREDIT MACRO NOPROCESS

2. Now process user input and check if certain line commands are entered. The O
and $ following the RANGE keyword specify the line commands to be
processed by this macro.
ISREDIT PROCESS RANGE O $

3. A zero return code shows that you entered an O or $ in any of its valid forms:
OO-OO, On, and so forth.
IF &LASTCC = 0 THEN

4. &CMD is set to O or $, whichever command was entered.
ISREDIT (CMD) = RANGE_CMD

/ * * /
/ * MA S K DA T A - Ov e r l a y a l i n e w i t h da t a f r om t h e ma s k l i n e . * /
/ * U s e e i t h e r l i n e comma n d 0 o r $ t o i n d i ca t e * /
/ * wh i c h l i n e t o o v e r l a y . 0 ca u s e s * /
/ * n o n d e s t r u c t i v e o v e r l a y , a n d $ ca u s e s a * /
/ * d e s t r u c t i v e o v e r l a y . * /
/ * * /
I S R E D I T MACRO NOP ROCE S S / * Wa i t t o p r o c e s s * /

I S R E D I T P ROCE S S R ANGE O $ / * " O " a n d " $ " r e s e r v ed * /
I F & L A S T CC = 0 T H E N / * f o r ma c r o * / +

DO / * I f s p e c i f i ed , g e t * /
I S R E D I T (CMD) = R ANGE _CMD / * comma n d e n t e r ed * /
I S R E D I T (F I R S T) = L I NE NUM . Z F R ANGE / * a n d l i n e n umb e r * /
I S R E D I T (L A S T) = L I NE NUM . Z L R ANGE / * r a n g e * /

DO WH I L E & F I R S T L E & L A S T / * L o op t o me r g e da t a * /
/ * b a s ed o n wh i c h * /
/ * l i n e comma n d wa s * /

I F &CMD = $ T H E N / * e n t e r ed . I f $ * / +
I S R E D I T L I NE & F I R S T = (L I NE) + MA S K L I NE

E L S E / * o v e r l a y da t a - e l s e * / +
I S R E D I T L I NE & F I R S T = MA S K L I NE + (L I NE)

/ * do n o t o v e r l a y * /
S E T F I R S T = & F I R S T + 1 / * I n c r eme n t l i n e n um * /

E ND / * * /
S E T RC = 0 / * * /

E ND / * * /
E L S E / * S e t p r omp t me s s ag e s * / +

DO / * * /
S E T Z E D SMSG = & S T R (E N T E R " O " / " $ " L I NE CMD)
S E T Z E D L MSG = & S T R (" MA S K DA T A " R EQU I R E S AN " O " OR +

" $ " CMD T O I ND I CA T E L I NE (S) ME RGE D W I T H MA S K L I NE)
I S P E X E C S E T MSG MSG (I S R Z 0 0 1) / * * /
S E T RC = 1 2 / * S e t r e t u r n co d e t o * /

E ND / * 1 2 t o k e ep comma n d * /
E X I T COD E (&RC) / * i n comma n d a r ea * /

Figure 63. MASKDATA Macro

MASKDATA Macro

140 z/OS V1R2.0 ISPF Edit and Edit Macros

5. &LINE1 and &LINE2 contain the first and last line numbers of the lines
specified by the user line commands.
ISREDIT (FIRST) = LINENUM .ZFRANGE
ISREDIT (LAST) = LINENUM .ZLRANGE
DO WHILE &FIRST LE &LAST

6. Each line that you specify is merged with data from the mask line. Note the
use of the LINE keyphrase on both sides of the assignment. The line command
entered controls how the data is merged. An O specifies that the mask line data
only overlays where the line contains blanks. A $ specifies that non-blank mask
line data overlays line data.
IF &CMD = $ THEN

ISREDIT LINE &FIRST = (LINE) + MASKLINE
ELSE

ISREDIT LINE &FIRST = MASKLINE + (LINE)

7. When no line command is entered, issue a prompt message. Set a return code
of 12 to keep MASKDATA displayed on the Command line.
SET ZEDSMSG = &STR(ENTER "O"/"$" LINE CMD)
SET ZEDLMSG = &STR("MASKDATA" REQUIRES AN "O" OR +

"$" CMD TO INDICATE LINE(S) MERGED WITH MASKLINE)
ISPEXEC SETMSG MSG(ISRZ001)
SET RC = 12

In the example shown in Figure 64, the mask line is specified and the range of
lines is set with the destructive $$ line command.

When you press Enter, the macro overlays the mask line onto the specified range
of lines, as shown in Figure 65 on page 142.

Figure 64. MASKDATA Macro - Before Running

MASKDATA Macro

Chapter 8. Sample Edit Macros 141

Figure 65. MASKDATA Macro - After Running

MASKDATA Macro

142 z/OS V1R2.0 ISPF Edit and Edit Macros

Part 3. Command Reference

Chapter 9. Edit Line Commands 151
Rules for Entering Line Commands 151
Edit Line Command Notation Conventions . . . 152
Line Command Summary 152
(—Column Shift Left 154

Syntax. 154
Description 154
Example 154

)—Column Shift Right 155
Syntax. 156
Description 156
Example 156

<—Data Shift Left 157
Syntax. 158
Description 158
Example 158

>—Data Shift Right 160
Syntax. 160
Description 160
Example 160

A—Specify an “After” Destination 161
Syntax. 162
Description 162
Example 162

B—Specify a “Before” Destination 164
Syntax. 164
Description 164
Example 164

BOUNDS—Define Boundary Columns 166
Syntax. 166
Description 166
Example 167

C—Copy Lines 168
Syntax. 168
Description 168
Example 168

COLS—Identify Columns 170
Syntax. 170
Description 170
Example 170

D—Delete Lines 171
Syntax. 171
Description 171
Example 172

F—Show the First Line 173
Syntax. 173
Description 173
Example 173

I—Insert Lines 174
Syntax. 174
Description 174
Example 175

L—Show the Last Line(s) 176
Syntax. 176
Description 176
Example 176

LC—Convert Characters to Lowercase 177
Syntax. 177
Description 177
Example 178

M—Move Lines 179
Syntax. 179
Description 179
Example 180

MASK—Define Masks 181
Syntax. 181
Description 181
Example 182

MD—Make Dataline 183
Syntax. 183
Description 183
Example 184

O—Overlay Lines 185
Syntax. 185
Description 185
Example 186

R—Repeat Lines 187
Syntax. 188
Description 188
Example 188

S—Show Lines 189
Syntax. 189
Description 189
Example 189

TABS—Control Tabs 191
Syntax. 191
Description 191
Examples 191

Using Software and Hardware Tabs 191
Using Software Tab Fields 192

TE—Text Entry 192
Syntax. 193
Description 193
Example 193

TF—Text Flow 196
Syntax. 196
Description 196
Example 196

TS—Text Split 197
Syntax. 198
Description 198
Examples 198

UC—Convert Characters to Uppercase 199
Syntax. 199
Description 199
Example 200

X—Exclude Lines 201
Syntax. 201
Description 201
Example 202

Chapter 10. Edit Primary Commands. 205

© Copyright IBM Corp. 1984, 2001 143

Edit Primary Command Notation Conventions . . 205
Edit Primary Command Summary 205
AUTOLIST—Create a Source Listing Automatically 209

Syntax. 210
Description 210
Example 210

AUTONUM—Number Lines Automatically . . . 211
Syntax 211
Description 211
Example 212

AUTOSAVE—Save Data Automatically 213
Syntax. 213
Description 213
Example 214

BOUNDS—Control the Edit Boundaries 214
Syntax. 214
Description 214
Examples 215

BUILTIN—Process a Built-In Command 215
Syntax. 215
Description 215
Example 215

BROWSE—Browse from within an Edit Session 216
Syntax. 216
Description 216
Example 216

CANCEL—Cancel Edit Changes 216
Syntax. 216
Description 217
Example 217

CAPS—Control Automatic Character Conversion 217
Syntax. 217
Description 217
Example 218

CHANGE—Change a Data String 218
Syntax. 218
Description 219
Examples 220

COMPARE—Edit Compare 220
Command Syntax 221
Examples 222

COPY—Copy Data 223
Syntax. 223
Description 224
Example 225

CREATE—Create Data 227
Syntax. 227
Description 227
Example 228

CUT—Cut and Save Lines 231
Syntax. 231
Description 231
Example 232

DEFINE—Define a Name 232
Syntax. 232
Description 233

Stacking DEFINE Commands 233
Examples 233

DELETE—Delete Lines 234
Syntax. 234
Description 234

Examples 235
EDIT—Edit from within an Edit Session 235

Syntax. 235
Description 235
Example 236

EDITSET—Display the Editor Settings Dialog . . 237
Syntax. 238
Description 238
The Edit and View Settings Panel 238
Example 240

END—End the Edit Session 241
Syntax. 241
Description 241
Example 241

EXCLUDE—Exclude Lines from the Display . . . 242
Syntax. 242
Description 242
Examples 243

FIND—Find a Data String 243
Syntax. 243
Description 244
Examples 245

FLIP—Reverse Exclude Status of Lines 245
Syntax. 245
Description 245
Example 246

HEX—Display Hexadecimal Characters 247
Syntax. 248
Description 248
Examples 248

HILITE—Enhanced Edit Coloring 250
Syntax. 250
Description 253

IMACRO—Specify an Initial Macro 253
Syntax. 253
Examples 253

LEVEL—Specify the Modification Level Number 254
Syntax. 254
Description 254
Example 254

LOCATE—Locate a Line. 255
Specific Locate Syntax 255
Generic Locate Syntax 256
Examples 256

MODEL—Copy a Model into the Current Data Set 257
Model Name Syntax 257
Class Name Syntax 258
Example 258

MOVE—Move Data 260
Syntax. 260
Description 261
Example 261

NONUMBER—Turn Off Number Mode 264
Syntax. 264
Description 264
Example 264

NOTES—Display Model Notes 264
Syntax. 264
Description 264
Examples 264

NULLS—Control Null Spaces 265

144 z/OS V1R2.0 ISPF Edit and Edit Macros

Syntax. 265
Description 265
Examples 265

NUMBER—Generate Sequence Numbers 266
Syntax. 266
Description 267
Examples 267

PACK—Compress Data 267
Syntax. 267
Examples 267

PASTE—Move or Copy Lines from Clipboard . . 267
Syntax. 268
Description 268
Example 268

PRESERVE - Enable Saving of Trailing Blanks . . 269
Syntax. 269
Description 269
Examples 269

PROFILE—Control and Display Your Profile . . . 269
Profile Control Syntax 270
Profile Lock Syntax 270
Profile Reset Syntax 270
Description 271
Example 271

RCHANGE—Repeat a Change 272
Syntax. 272
Description 272

RECOVERY—Control Edit Recovery. 273
Syntax. 273
Description 273

RENUM—Renumber Data Set Lines 274
Syntax. 274
Description 275
Example 275

REPLACE—Replace Data 276
Syntax. 277
Description 277
Example 278

RESET—Reset the Data Display 280
Syntax. 280
Description 281
Examples 281

RFIND—Repeat Find 282
Syntax. 282

RMACRO—Specify a Recovery Macro 282
Syntax. 282
Description 282
Example 282

SAVE—Save the Current Data 282
Syntax. 283
Description 283
Example 283

SETUNDO—Set the UNDO Mode 283
Syntax. 283
Description 284
Example 285

SORT—Sort Data 285
Syntax. 285
Description 286

Sorting Data Without Operands 286
Limiting the SORT Command 286

Sorting DBCS Data 286
Examples 287

STATS—Generate Library Statistics 287
Syntax. 287
Examples 287

SUBMIT—Submit Data for Batch Processing . . . 287
Syntax. 287
Description 288
Examples 288

TABS—Define Tabs 288
Syntax. 288
Example 289

UNDO—Reverse Last Edit Interaction 290
Syntax. 290
Description 290
Example 291

UNNUMBER—Remove Sequence Numbers . . . 292
Syntax. 293
Description 293
Example 293

VERSION—Control the Version Number 294
Syntax. 294
Description 294
Example 294

VIEW—View from within an Edit Session 295
Syntax. 296
Description 296
Example 296

Chapter 11. Edit Macro Commands and
Assignment Statements 297
Edit Macro Command Notation Conventions . . . 297
Edit Macro Command Summary 298
AUTOLIST—Set or Query Autolist Mode 306

Macro Command Syntax 306
Assignment Statement Syntax 306
Return Codes 306
Examples 307

AUTONUM—Set or Query Autonum Mode . . . 307
Macro Command Syntax 307
Assignment Statement Syntax 307
Description 307
Return Codes 308
Examples 308

AUTOSAVE—Set or Query Autosave Mode . . . 308
Macro Command Syntax 308
Assignment Statement Syntax 308
Description 309
Return Codes 309
Examples 309

BLKSIZE—Query the Block Size 309
Assignment Statement Syntax 310
Return Codes 310
Example 310

BOUNDS—Set or Query the Edit Boundaries. . . 310
Macro Command Syntax 310
Assignment Statement Syntax 310
Description 311
Return Codes 311
Examples 311

BROWSE—Browse from within an Edit Session 312

Part 3. Command Reference 145

Macro Command Syntax 312
Description 312
Return Codes 312
Examples 312

BUILTIN—Process a Built-In Command 312
Macro Command Syntax 312
Description 313
Return Codes 313
Examples 313

CANCEL—Cancel Edit Changes 313
Macro Command Syntax 313
Description 313
Return Codes 313
Example 314

CAPS—Set or Query Caps Mode 314
Macro Command Syntax 314
Assignment Statement Syntax 314
Description 314
Return Codes 315
Examples 315

CHANGE—Change a Search String 315
Macro Command Syntax 315
Description 316
Return Codes 317
Example 317

CHANGE_COUNTS—Query Change Counts. . . 317
Assignment Statement Syntax 317
Return Codes 317
Examples 318

COMPARE—Edit Compare 318
Macro Command Syntax 318
Return Codes 320
Compare Examples 320

COPY—Copy Data 321
Macro Command Syntax 321
Return Codes 321
Examples 321

CREATE—Create a Data Set or a Data Set Member 322
Macro Command Syntax 322
Description 322
Return Codes 322
Example 322

CURSOR—Set or Query the Cursor Position . . . 322
Assignment Statement Syntax 323
Description 323
Return Codes 324
Examples 324

CUT—Cut and Save Lines 325
Syntax. 325
Description 325
Return Codes 325
Examples 325

DATA_CHANGED—Query the Data Changed
Status 326

Assignment Statement Syntax 326
Description 326
Return Codes 326
Example 326

DATA_WIDTH—Query Data Width 326
Assignment Statement Syntax 326
Description 327

Return Codes 327
Example 327

DATAID—Query Data ID 327
Assignment Statement Syntax 327
Description 328
Return Codes 328
Example 328

DATASET—Query the Current and Original Data
Set Names 328

Assignment Statement Syntax 328
Return Codes 328
Example 329

DEFINE—Define a Name 329
Macro Command Syntax 329
Description 330
Return Codes 330
Examples 330

DELETE—Delete Lines 330
Macro Command Syntax 331
Description 331
Return Codes 331
Examples 331

DISPLAY_COLS—Query Display Columns . . . 331
Assignment Statement Syntax 332
Description 332
Return Codes 332
Example 332

DISPLAY_LINES—Query Display Lines 332
Assignment Statement Syntax 332
Return Codes 333
Example 333

DOWN—Scroll Down 333
Macro Command Syntax 333
Description 333
Return Codes 334
Examples 334

EDIT—Edit from within an Edit Session 334
Macro Command Syntax 334
Description 334
Return Codes 335
Example 335

END—End the Edit Session 335
Macro Command Syntax 335
Description 335
Return Codes 335
Example 336

EXCLUDE—Exclude Lines from the Display . . . 336
Macro Command Syntax 336
Description 337
Return Codes 337
Examples 338

EXCLUDE_COUNTS—Query Exclude Counts . . 338
Assignment Statement Syntax 338
Return Codes 338
Example 338

FIND—Find a Search String 338
Macro Command Syntax 338
Description 339
Return Codes 340
Examples 340

FIND_COUNTS—Query Find Counts 340

146 z/OS V1R2.0 ISPF Edit and Edit Macros

Assignment Statement Syntax 341
Return Codes 341
Example 341

FLIP—Reverse Exclude Status of Lines 341
Assignment Statement Syntax 341
Return Codes 341
Examples 341

FLOW_COUNTS—Query Flow Counts 342
Assignment Statement Syntax 342
Return Codes 342
Example 342

HEX—Set or Query Hexadecimal Mode 342
Macro Command Syntax 342
Assignment Statement Syntax 343
Description 343
Return Codes 343
Examples 343

HILITE—Enhanced Edit Coloring 344
Macro Command Syntax 344
Description 346
Return Codes 346

IMACRO—Set or Query an Initial Macro 347
Macro Command Syntax 347
Assignment Statement Syntax 347
Return Codes 347
Examples 347

INSERT—Prepare Display for Data Insertion . . . 348
Macro Command Syntax 348
Description 348
Return Codes 348
Example 348

LABEL—Set or Query a Line Label 348
Assignment Statement Syntax 348
Description 349
Return Codes 349
Example 349

LEFT—Scroll Left 349
Macro Command Syntax 349
Description 350
Return Codes 350
Example 350

LEVEL—Set or Query the Modification Level
Number 350

Macro Command Syntax 350
Assignment Statement Syntax 351
Return Codes 351
Examples 351

LINE—Set or Query a Line from the Data Set . . 351
Assignment Statement Syntax 351
Description 352
Return Codes 352
Examples 352

LINE_AFTER—Add a Line to the Current Data Set 352
Assignment Statement Syntax 352
Description 353
Return Codes 353
Examples 353

LINE_BEFORE—Add a Line to the Current Data
Set 354

Assignment Statement Syntax 354
Description 355

Return Codes 355
Examples 355

LINE_STATUS—Query Source and Change
Information for a Line in a Data Set 355

Assignment Statement Syntax 356
Return Codes 356
Example 356

LINENUM—Query the Line Number of a Labeled
Line 357

Assignment Statement Syntax 357
Return Codes 357
Description 357
Examples 357

LOCATE—Locate a Line. 357
Specific Locate Syntax 358
Generic Locate Syntax 358
Return Codes 359
Examples 359

LRECL—Query the Logical Record Length . . . 359
Assignment Statement Syntax 359
Description 360
Return Codes 360
Example 360

MACRO—Identify an Edit Macro 360
Macro Command Syntax 360
Description 360
Return Codes 361
Examples 361

MACRO_LEVEL—Query the Macro Nesting Level 361
Assignment Statement Syntax 361
Description 361
Return Codes 361
Example 361

MASKLINE—Set or Query the Mask Line 362
Assignment Statement Syntax 362
Description 362
Return Codes 362
Examples 362

MEMBER—Query the Current Member Name . . 363
Assignment Statement Syntax 363
Return Codes 363
Example 363

MEND—End a Macro in the Batch Environment 363
Macro Command Syntax 363
Return Codes 363

MODEL—Copy a Model into the Current Data Set 363
Macro Command Model Name Syntax 363
Macro Command Class Name Syntax 364
Return Codes 364
Example 365

MOVE— Move a Data Set or a Data Set Member 365
Macro Command Syntax 365
Description 365
Return Codes 365
Examples 366

NONUMBER—Turn Off Number Mode 366
Syntax. 366
Description 366
Return Codes 366
Example 366

NOTES—Set or Query Note Mode 366

Part 3. Command Reference 147

Macro Command Syntax 366
Assignment Statement Syntax 367
Return Codes 367
Examples 367

NULLS—Set or Query Nulls Mode 367
Macro Command Syntax 367
Assignment Statement Syntax 367
Description 368
Return Codes 368
Examples 368

NUMBER—Set or Query Number Mode 368
Macro Command Syntax 368
Assignment Statement Syntax 369
Description 370
Return Codes 371
Example 371

PACK—Set or Query Pack Mode 371
Macro Command Syntax 371
Assignment Statement Syntax 371
Return Codes 371
Example 371

PASTE—Move or Copy Lines from Clipboard . . 372
Syntax. 372
Description 372
Return Codes 372
Examples 372

PRESERVE—Enable Saving of Trailing Blanks . . 373
Macro Command Syntax 373
Assignment Statement Syntax 373
Description 373
Return Codes 373
Examples 373

PROCESS—Process Line Commands 374
Macro Command Syntax 374
Description 374
Return Codes 374
Examples 375

PROFILE—Set or Query the Current Profile . . . 375
Macro Command Profile Control Syntax . . . 375
Macro Command Profile Lock Syntax 376
Macro Command Profile Reset Syntax 376
Assignment Statement Syntax 376
Description 377
Return Codes 377
Example 377

RANGE_CMD—Query a Command That You
Entered 377

Assignment Statement Syntax 377
Description 377
Return Codes 377
Example 377

RCHANGE—Repeat a Change 378
Macro Command Syntax 378
Description 378
Return Codes 378
Example 378

RECFM—Query the Record Format 378
Assignment Statement Syntax 378
Return Codes 379
Example 379

RECOVERY—Set or Query Recovery Mode . . . 379

Macro Command Syntax 379
Assignment Statement Syntax 380
Return Codes 380
Examples 380

RENUM—Renumber Data Set Lines 380
Macro Command Syntax 381
Return Codes 381
Examples 381

REPLACE—Replace a Data Set or Data Set
Member 382

Macro Command Syntax 382
Return Codes 382
Example 382

RESET—Reset the Data Display 382
Macro Command Syntax 383
Description 383
Return Codes 383
Examples 384

RFIND—Repeat Find 384
Macro Command Syntax 384
Return Codes 384
Example 384

RIGHT—Scroll Right 385
Macro Command Syntax 385
Description 385
Return Codes 385
Example 385

RMACRO—Set or Query the Recovery Macro . . 385
Macro Command Syntax 386
Assignment Statement Syntax 386
Return Codes 386
Example 386

SAVE—Save the Current Data 386
Macro Command Syntax 386
Description 386
Return Codes 387
Example 387

SAVE_LENGTH—Set or Query Length for Variable
Length Data 387

Assignment Statement Syntax 387
Description 387
Return Codes 388
Examples 388

SCAN—Set Command Scan Mode 388
Macro Command Syntax 388
Assignment Statement Syntax 388
Return Codes 389
Example 389

SEEK—Seek a Data String, Positioning the Cursor 389
Macro Command Syntax 389
Description 390
Return Codes 391
Examples 391

SEEK_COUNTS—Query Seek Counts 391
Assignment Statement Syntax 391
Return Codes 391
Example 391

SESSION—Query Session Type 391
Assignment Statement Syntax 392
Return Codes 392

SETUNDO—Set UNDO Mode. 392

148 z/OS V1R2.0 ISPF Edit and Edit Macros

Macro Command Syntax 392
Assignment Statement Syntax 392
Description 393
Return Codes 393
Examples 393

SHIFT (—Shift Columns Left 393
Macro Command Syntax 393
Description 394
Return Codes 394
Examples 394

SHIFT)—Shift Columns Right. 394
Macro Command Syntax 394
Description 394
Return Codes 394
Examples 394

SHIFT <—Shift Data Left 395
Macro Command Syntax 395
Description 395
Return Codes 395
Examples 395

SHIFT >—Shift Data Right 395
Macro Command Syntax 395
Description 396
Return Codes 396
Examples 396

SORT—Sort Data 396
Macro Command Syntax 396
Description 397

Sorting Data Without Operands 397
Limiting the SORT Command 397
Sorting DBCS Data 397

Return Codes 398
Examples 398

STATS—Set or Query Stats Mode. 398
Macro Command Syntax 398
Assignment Statement Syntax 398
Return Codes 398
Examples 398

SUBMIT—Submit Data for Batch Processing . . . 399
Macro Command Syntax 399
Description 399
Return Codes 399
Examples 399

TABS—Set or Query Tabs Mode 399
Macro Command Syntax 400
Assignment Statement Syntax 401
Return Codes 401
Examples 401

TABSLINE—Set or Query Tabs Line 401
Assignment Statement Syntax 401
Return Codes 402
Examples 402

TENTER—Set Up Panel for Text Entry 402
Macro Command Syntax 403
Description 403
Return Codes 404
Example 404

TFLOW—Text Flow a Paragraph 404
Macro Command Syntax 404
Return Codes 404
Example 404

TSPLIT—Text Split a Line 404
Macro Command Syntax 405
Description 405
Return Codes 405
Example 405

UNNUMBER—Remove Sequence Numbers . . . 405
Macro Command Syntax 405
Description 405
Return Codes 405
Example 406

UP—Scroll Up 406
Macro Command Syntax 406
Description 406
Return Codes 406
Examples 407

USER_STATE—Save or Restore User State 407
Assignment Statement Syntax 407
Description 407
Return Codes 407
Examples 408

VERSION—Set or Query Version Number 408
Macro Command Syntax 408
Assignment Statement Syntax 408
Return Codes 408
Examples 408

VIEW—View from within an Edit Session 409
Macro Command Syntax 409
Description 409
Return Codes 409
Examples 409

VOLUME—Query Volume Information. 409
Assignment Statement Syntax 409
Return Codes 409
Examples 410

XSTATUS—Set or Query Exclude Status of a Line 410
Assignment Statement Syntax 410
Description 410
Return Codes 410
Examples 411

Part 3. Command Reference 149

150 z/OS V1R2.0 ISPF Edit and Edit Macros

Chapter 9. Edit Line Commands

Edit line commands affect only a single line or block of lines. You enter line
commands by typing over the 6-digit number in the line command area on one or
more lines and pressing Enter. Most command definitions in this book consist of
the following information:

Syntax A syntax diagram is how you type the command.
It includes a description of any required or
optional operands.

Description A description explains the function and operation
of the command. This description may also refer to
other commands that can be used with this
command.

Example An example gives a sample usage of the line
command.

Rules for Entering Line Commands
Enter a line command by one of the following:
v Type the command in the line command area and press Enter.
v Place the cursor in the data or line command field and press a function key to

which the command is assigned.

The following rules apply to all line commands:
v You can type several line commands and make multiple data changes before you

press Enter. The editor displays an error message if the line command is
ambiguous. Because the line commands are processed from top to bottom, it is
possible to have one error message appear that masks a later error condition.
Only the first error condition found is displayed. After you have corrected that
error condition, processing can continue and the next error condition, if any, is
displayed. If you type a line command incorrectly, you can replace it before you
press Enter by retyping it, blanking it out, or entering RESET.

v Generally, you need to type over only the first 1 or 2 characters of the line
number to enter a line command. Sometimes, however, typing a single character
can be ambiguous. In the following example, it is unclear whether the intended
line command is R to repeat line 31700, or R3 to repeat the line three times:
031600
R31700
031800

In such cases, the ISPF editor assumes that you have not typed a number
following the line command. If you want to repeat the line three times, you can
use any of the following procedures:
– Leave the cursor on the character that immediately follows the R3:

R31700

– Type one or more blanks following the R3:
R3 700

– Type one or more blanks following the R but before the number, leaving the
cursor on the character that immediately follows the 3:

© Copyright IBM Corp. 1984, 2001 151

R 3700

– Type R3 and press the Erase EOF key to clear the rest of the Line Command
field, or press the Erase EOF key and then type R3.

v You can type the following line commands on the TOP OF DATA line by typing
over the asterisks that appear in its line command field:

I[n] Insert one or n lines ahead of the data.

A[n] Move or copy a line or lines one or n times ahead of the data.

TE[n] Type one or n text lines ahead of the data.
v You can type the following line command on the BOTTOM OF DATA line by typing

over the asterisks:

B[n] Move or copy a line or lines one or n times following the data.

Edit Line Command Notation Conventions
The syntax of the PDF line commands uses the following notation conventions:

Uppercase
Uppercase commands or operands must be spelled as shown (in either
uppercase or lowercase). (See “Appendix A. Abbreviations for Commands
and Other Values” on page 415.)

Lowercase
Lowercase operands are variables; substitute your own values.

Underscore
Underscored operands are the system defaults.

Brackets ([])
Operands in brackets are optional.

Stacked operands
Stacked operands show two or more operands from which you can select.
If you do not choose any, the default operand is used.

Braces ({ })
Braces show two or more operands from which you must select one. .

OR (|)
The OR (|) symbol shows two or more operands from which you must
select one.

Table 4 summarizes line commands.

Line Command Summary
Table 4. Summary of the Line Commands

Command Page Description

([n]
[2]
(([n]

[2]

“(—Column Shift Left” on
page 154

Shifts columns left two positions or the specified
number of positions.

)[n]
[2]
))[n]

[2]

“)—Column Shift Right”
on page 155

Shifts columns right two positions or the
specified number of positions.

Rules for Entering Line Commands

152 z/OS V1R2.0 ISPF Edit and Edit Macros

Table 4. Summary of the Line Commands (continued)

Command Page Description

<[n]
[2]
<<[n]

[2]

“<—Data Shift Left” on
page 157

Shifts data left two positions or the specified
number of positions.

>[n]
[2]
>>[n]

[2]

“>—Data Shift Right” on
page 160

Shifts data right two positions or the specified
number of positions.

A[n] “A—Specify an “After”
Destination” on page 161

Identifies the line after which copied, moved, or
model lines are to be inserted.

B[n] “B—Specify a “Before”
Destination” on page 164

Identifies the line before which copied, moved,
or model lines are to be inserted.

BOUNDS “BOUNDS—Define
Boundary Columns” on

page 166

Displays the column boundary definition line.

C[n]
CC

“C—Copy Lines” on
page 168

Copies one or more lines from one location to
another.

COLS “COLS—Identify
Columns” on page 170

Displays a position identification line.

D[n]
DD

“D—Delete Lines” on
page 171

Deletes one or more lines.

F[n] “F—Show the First Line”
on page 173

Redisplays one or more lines at the beginning of
a block of excluded lines.

I[n] “I—Insert Lines” on
page 174

Inserts one or more blank data entry lines.

L[n] “L—Show the Last
Line(s)” on page 176

Redisplays one or more lines at the end of a
block of excluded lines.

LC[n]
LCC
LCLC

“LC—Convert Characters
to Lowercase” on page 177

Converts all uppercase alphabetic characters in
one or more lines to lowercase.

M[n]
MM

“M—Move Lines” on
page 179

Moves one or more lines from one location to
another.

MASK “MASK—Define Masks”
on page 181

Displays the contents of the mask when used
with the I (insert), TE (text entry), and TS (text
split) line commands.

MD[n]
MDD
MDMD

“MD—Make Dataline” on
page 183

Converts one or more ==MSG>, =NOTE=, =COLS>,
and ====== (information) lines to data so that
they can be saved as part of your data set.

O[n]
OO

“O—Overlay Lines” on
page 185

Identifies the lines over which data is to be
moved or copied.

R[n]
RR[n]

“R—Repeat Lines” on
page 187

Repeats one or more lines.

S[n] “S—Show Lines” on
page 189

Redisplays one or more lines with the leftmost
indentation in a block of excluded lines.

TABS “TABS—Control Tabs” on
page 191

Displays the tab definition line.

TE[n] “TE—Text Entry” on
page 192

Inserts blank lines to allow power typing for
text entry.

Line Command Summary

Chapter 9. Edit Line Commands 153

Table 4. Summary of the Line Commands (continued)

Command Page Description

TF[n] “TF—Text Flow” on
page 196

Restructures paragraphs following deletions,
insertions, splitting, and so forth.

TS[n] “TS—Text Split” on
page 197

Divides one or more lines so that data can be
added.

UC[n]
UCC
UCUC

“UC—Convert Characters
to Uppercase” on page 199

Converts all lowercase alphabetic characters in
one or more lines to uppercase.

X[n]
XX

“X—Exclude Lines” on
page 201

Excludes one or more lines from a panel.

(—Column Shift Left
The ((column shift left) line command moves characters on a line to the left
without altering their relative spacing. Characters shifted past the current
BOUNDS setting are deleted. See “Shifting Data” on page 49 for more information.

Syntax
([n]
[2]
(([n]

[2]

n A number that tells the ISPF editor how many positions to shift. If you
omit this operand, the default is 2.

Description
To column shift one line toward the left side of your display:
1. Type (in the line command area of the line to be shifted. Beside the command,

type a number other than 2 if you want to shift the line other than 2 columns.
2. Press Enter.

To column shift a block of lines toward the left side of your display:
1. Type ((in the line command area of the first line to be shifted. Beside the

command, type a number other than 2 if you want to shift the block of lines
other than 2 columns.

2. Type ((in the line command area of the last line to be shifted. You can scroll
(or use FIND or LOCATE) between typing the first ((and the second ((, if
necessary.

3. Press Enter. The lines that contain the two ((commands and all of the lines
between them are column shifted to the left.

The BOUNDS setting limits column shifting. If you shift columns beyond the
current BOUNDS setting, the editor deletes the text beyond the BOUNDS without
displaying a warning message.

Example
To shift a group of lines to the left three column positions, specify the number of
columns and the range in the line command area, as shown in Figure 66 on
page 155.

Line Command Summary

154 z/OS V1R2.0 ISPF Edit and Edit Macros

Press Enter and the editor shifts the specified lines three columns to the right. See
Figure 67.

)—Column Shift Right
The) (column shift right) line command moves characters on a line to the right
without altering their relative spacing. Characters shifted past the current
BOUNDS setting are deleted. See “Shifting Data” on page 49 for more information.

Figure 66. Before the ((Column Shift Left) Line Command

Figure 67. After the ((Column Shift Left) Line Command

(—Column Shift Left

Chapter 9. Edit Line Commands 155

Syntax
)[n]
[2]
))[n]

[2]

n A number that tells the ISPF editor how many positions to shift. If you
omit this operand, the default is 2.

Description
To column shift one line toward the right side of your display:
1. Type) in the line command area of the line to be shifted. Beside the command,

type a number other than 2 if you want to shift the data other than 2 columns.
2. Press Enter.

To column shift a block of lines toward the right side of your display:
1. Type)) in the line command area of the first line to be shifted. Beside the

command, type a number other than 2 if you want to shift the block of lines
other than 2 columns.

2. Type)) in the line command area of the last line to be shifted. You can scroll
(or use FIND or LOCATE) between typing the first)) and the second)), if
necessary.

3. Press Enter. The lines that contain the two)) commands and all of the lines
between them are column shifted to the right.

The BOUNDS setting limits column shifting. If you shift columns beyond the
current BOUNDS setting, the editor deletes the text beyond the BOUNDS without
displaying a warning message.

Example
To shift a group of lines to the right 3 column positions, specify the number of
columns and the range in the line command area, as shown in Figure 68 on
page 157.

)—Column Shift Right

156 z/OS V1R2.0 ISPF Edit and Edit Macros

Figure 69 shows that when you press Enter, the editor shifts the specified lines to
the right 3 columns.

<—Data Shift Left
The < (data shift left) line command moves the body of a program statement to the
left without shifting the label or comments. This command attempts to prevent loss
of data. See “Shifting Data” on page 49 for more information.

Figure 68. Before the) (Column Shift Right) Line Command

Figure 69. After the) (Column Shift Right) Line Command

)—Column Shift Right

Chapter 9. Edit Line Commands 157

Syntax
<[n]
[2]
<<[n]

[2]

n A number that tells the ISPF editor how many positions to shift. If you
omit this operand, the default is 2.

Description
To data shift one line toward the left side of your display:
1. Type < in the line command area of the line to be shifted. Beside the command,

type a number other than 2 if you want to shift the data other than 2 columns.
2. Press Enter.

To data shift a block of lines toward the left side of your display:
1. Type << in the line command area of the first line to be shifted. Beside the

command, type a number other than 2 if you want to shift the block of lines
other than 2 columns.

2. Type << in the line command area of the last line to be shifted. You can scroll
(or use FIND or LOCATE) between typing the first << and the second <<, if
necessary.

3. Press Enter. The lines that contain the two << commands and all of the lines
between them are data shifted to the left.

The BOUNDS setting limits data shifting. If you shift data beyond the current
BOUNDS setting, the text stops at the left bound and the shifted lines are marked
with ==ERR> flags. If an error occurs in an excluded line, you can find the error
with LOCATE, and remove the error flag by using RESET.

Example
To use a data shift to delete 5 blanks before a segment of three lines, specify the
shift and the range in the line command area, as shown in Figure 70 on page 159.

<—Data Shift Left

158 z/OS V1R2.0 ISPF Edit and Edit Macros

When you press Enter, the editor deletes 5 blanks on the specified lines. Notice
that the editor does not shift data within the BOUNDS setting, as shown in
Figure 71.

Figure 70. Before the < (Data Shift Left) Line Command

Figure 71. After the < (Data Shift Left) Line Command

<—Data Shift Left

Chapter 9. Edit Line Commands 159

>—Data Shift Right
The > (data shift right) line command moves the body of a program statement to
the right without shifting the label or comments. This command attempts to
prevent loss of data. See “Shifting Data” on page 49 for more information.

Syntax
>[n]
[2]
>>[n]

[2]

n A number that tells the ISPF editor how many positions to shift. If you
omit this operand, the default is 2.

Description
To data shift one line toward the right side of your display:
1. Type > in the line command area of the line to be shifted. Beside the command,

type a number other than 2 if you want to shift the line other than 2 columns.
2. Press Enter.

To data shift a block of lines toward the right side of your display:
1. Type >> in the line command area of the first line to be shifted. Beside the

command, type a number other than 2 if you want to shift the block of lines
other than 2 columns.

2. Type >> in the line command area of the last line to be shifted. You can scroll
(or use FIND or LOCATE) between typing the first >> and the second >>, if
necessary.

3. Press Enter. The lines that contain the two >> commands and all of the lines
between them are data shifted to the right.

The BOUNDS setting limits data shifting. If you shift data beyond the current
BOUNDS setting, the text stops at the right bound and the shifted lines are marked
with ==ERR> flags. If an error occurs in an excluded line, you can find the error
with the LOCATE command, and remove the error flag by using RESET.

Example
To use a data shift to insert 5 blanks before a segment of three lines, specify the
shift and the range in the line command area, as shown in Figure 72 on page 161.

>—Data Shift Right

160 z/OS V1R2.0 ISPF Edit and Edit Macros

When you press Enter, the editor inserts 5 blanks on the specified lines. See
Figure 73. Notice that the editor does not shift the data within the BOUNDS
setting.

A—Specify an “After” Destination
The A (after) line command specifies the destination for data is to be moved,
copied, or inserted.

Figure 72. Before the > (Data Shift Right) Line Command

Figure 73. After the > (Data Shift Right) Line Command

>—Data Shift Right

Chapter 9. Edit Line Commands 161

Syntax
A[n]

n A number that tells the ISPF editor to repeat the associated line command
a specified number of times. If you do not type a number, or if the number
you type is 1, the editor performs the command only once. The number
does not affect associated primary commands.

Description
To specify that data is to be moved, copied, or inserted after a specific line:
1. Type one of the commands that are listed in the following table. Line

commands are typed in the line command area. Primary commands are typed
on the Command line.

Line Commands See topic Primary Commands See topic
C “C—Copy

Lines” on
page 168

COPY “COPY—Copy
Data” on
page 223

M “M—Move
Lines” on
page 179

MODEL “MODEL—Copy
a Model into
the Current
Data Set” on

page 257
MOVE “MOVE—Move

Data” on
page 260

2. Type A in the line command area of the line that the moved, copied, or inserted
data is to follow. If you are specifying the destination for a line command, a
number after the A line command specifies the number of times the other line
command is performed. However, a number after the A command has no affect
on a primary command.

3. Press Enter.
4. Some of the commands in the preceding table can cause another panel to be

displayed if more information is needed. If so, fill in the required information
and press Enter to move, copy, or insert the data. Refer to information about
the specified command if you need help.
If no panel is displayed, the data is moved, copied, or inserted when you press
Enter in step 3.

You must always specify a destination except when you are using a primary
command to move, copy, or insert data into a member or data set that is empty.

Two other line commands that are used to specify a destination are the B (before)
command and the O (overlay) command. See “B—Specify a “Before” Destination”
on page 164 and “O—Overlay Lines” on page 185 for more information.

Example
Figure 74 shows how you can move data with the M and A line commands, or
copy data with the C and A line commands. Type M in the line command area of
the line you want to move. Type A in the line command area of the line that you
want the moved line to follow.

A—Specify an ″After″ Destination

162 z/OS V1R2.0 ISPF Edit and Edit Macros

When you press Enter, the line where you typed the M command is moved after
the line where you typed the A command. See Figure 75.

Note: If you press Enter before specifying where you want the data to go, the
editor displays a MOVE/COPY pending message at the top of the panel. The
line does not move until you specify a destination.

Figure 74. Before the A (After) Line Command

Figure 75. After the A (After) Line Command

A—Specify an ″After″ Destination

Chapter 9. Edit Line Commands 163

B—Specify a “Before” Destination
The B (before) line command specifies the destination for data to be moved,
copied, or inserted.

Syntax
B[n]

n A number that tells the ISPF editor to repeat the associated line command
a specified number of times. If you do not type a number, or if the number
you type is 1, the command is not repeated. For associated primary
commands, this number has no effect.

Description
To specify that data is to be moved, copied, or inserted before a specific line:
1. Type one of the commands that are listed in the following table. Line

commands are typed in the line command area. Primary commands are typed
on the Command line.

Line Commands See topic Primary Commands See topic
C “C—Copy

Lines” on
page 168

COPY “COPY—Copy
Data” on
page 223

M “M—Move
Lines” on
page 179

MODEL “MODEL—Copy
a Model into
the Current
Data Set” on

page 257
MOVE “MOVE—Move

Data” on
page 260

2. Type B in the line command area of the line that the moved, copied, or inserted
data is to precede. If you are specifying the destination for a line command, a
number after the B line command to specifies the number of times that the
other line command is performed. However, a number that you type after the B
command has no effect on a primary command.

3. Press Enter.
4. Some of the commands in the preceding table can cause another panel to be

displayed if more information is needed. If so, fill in the required information
and press Enter to move, copy, or insert the data. Refer to information about
the specified command if you need help.
If no panel is displayed, the data is moved, copied, or inserted when you press
Enter in step 3.

You must always specify a destination except when you are using a primary
command to move, copy, or insert data into a member or data set that is empty.

Two other line commands that are used to specify a destination are the A (after)
command and the O (overlay) command. See “A—Specify an “After” Destination”
on page 161 and “O—Overlay Lines” on page 185 for more information.

Example
Figure 76 on page 165 shows how you can copy data with the C and B line
commands, or move data with the M and B line commands. Type C in the line

B—Specify a ″Before″ Destination

164 z/OS V1R2.0 ISPF Edit and Edit Macros

command area of the line you want to copy. Type B in the line command area of
the line that the copied line precedes.
When you press Enter, the line where you typed the C command is moved before

the line where you typed the B command, as shown in Figure 77.

Note: If you press Enter before specifying where you want the data to go, the
editor displays a MOVE/COPY pending message at the top of the panel. The
line is not copied until you specify a destination.

Figure 76. Before the B (Before) Line Command

Figure 77. After the B (Before) Line Command

B—Specify a ″Before″ Destination

Chapter 9. Edit Line Commands 165

BOUNDS—Define Boundary Columns
The BOUNDS line command displays the boundary definition line.

Syntax
BOUNDS

Description
The BOUNDS line command provides an alternative to setting the boundaries with
the BOUNDS primary command or macro command; the effect on the member or
data set is the same. However, if you use both the BOUNDS primary command
and the BOUNDS line command in the same interaction, the line command
overrides the primary command.

To display the boundary definition (=BNDS>) line:
1. Type BOUNDS in the line command area of any unflagged line.
2. Press Enter. The boundary definition line is inserted in the data set or member.

To change the BOUNDS settings:
1. Delete a < or > character. The < character shows the left BOUNDS setting and

the > character shows the right BOUNDS setting.
2. Move the cursor to a different location on the =BNDS> line.

Note: You can use the COLS line command with the BOUNDS line command
to help check and reposition the BOUNDS settings. The COLS line
command displays the column identification line.

3. Retype the deleted character or characters.

Note: The < character must be typed to the left of the > character.
4. Press Enter. The new BOUNDS settings are now in effect.

To revert to the default settings:
1. Display the boundary definition line.
2. Blank out its contents with the Erase EOF key, the cursor, or the Del (delete)

key.
3. Press Enter.

Note: See “Edit Boundaries” on page 26 for a table that shows the default
bounds settings for various types of data sets.

To remove the boundary definition line from the panel:
1. You can either type D in the line command area that contains the =BNDS> flag or

type one of the following on the Command line:
v RESET (to reset all flagged lines), or
v RESET SPECIAL (to reset only the special lines).

2. Press Enter. The =BNDS> line is removed from the display.

See “Edit Boundaries” on page 26 for more information, including tables that show
commands affected by BOUNDS settings and default bounds settings for various
types of data sets.

BOUNDS—Define Boundary Columns

166 z/OS V1R2.0 ISPF Edit and Edit Macros

Example
Figure 78 shows the boundary definition line displayed with the column
identification line. Type BOUNDS in the line command area.

Figure 79 shows that when you press Enter, the editor inserts the BOUNDS line
and sets the left bound at column 43 and the right bound at column 69.

Figure 78. Before the BOUNDS Line Command

ile dit E it_Settings enu tilities ompilers est elp

EDIT P020136.PRIVATE.PLS(INTO) - 01.00 Columns 00001 00072
****** ***************************** Top of Data ******************************
000100 /* REXX */

****** **************************** Bottom of Data ****************************

Command ===> Scroll ===>
F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
F8=Down F9=Swap F10=Left F11=Right F12=Cancel

F E d M U C T H

PAGE

000200 ARG FIRST LAST /* SET ARGUMENTS */
000300 IF FIRST > LAST /* IF ‘FIRST’ IS GREATER */
=COLS> ----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
=BNDS < >
000400 THEN /* THAN ‘LAST’, */
000500 DO /* AND */
000600 IF TEMP = FIRST /* IF ‘TEMP’ IS EQUAL */
000700 THEN /* TO ‘FIRST’, THEN */
000800 FIRST = LAST /* SET FIRST EQUAL */
000900 ELSE /* TO ‘LAST’, OTHERWISE */
001000 LAST = TEMP /* SET ‘LAST’ EQUAL */
001100 END /* TO TEMP */
001200 END /* */

Session A - [24x80]

F E T p C s W Hile dit ransfer Ap earance ommunication As ist indow elp

09/009

Figure 79. After the BOUNDS Line Command

BOUNDS—Define Boundary Columns

Chapter 9. Edit Line Commands 167

C—Copy Lines
The C (copy) line command copies lines from one location to another.

Syntax
C[n]
CC

n The number of lines to be copied. If you do not type a number, or if the
number you type is 1, only the line on which you type C is copied.

Description
To copy one or more lines within the same data set or member:
1. Type C in the line command area of the line to be copied. If you also want to

copy one or more lines that immediately follow this line, type a number greater
than 1 after the C command.

2. Next, specify the destination of the line to be copied by using either the A
(after), B (before), or O (overlay) line command.

3. Press Enter. The line or lines are copied to the new location.

To copy a block of lines within the same data set or member:
1. Type CC in the line command area of both the first and last lines to be copied.

You can scroll (or use FIND or LOCATE) between typing the first CC and the
second CC, if necessary.

2. Use the A (after), B (before), or OO (overlay) command to show where the
copied lines are to be placed. Notice that when you use the block form of the C
command (CC) to copy and overlay lines, you should also use the block form
of the O command (OO).

3. Press Enter. The lines that contain the two CC commands and all of the lines
between them are copied to the new location.

To copy lines to another data set or member:

Note: To copy lines into an existing data set or member without replacing that
data set or member, edit the existing data set or member and use the COPY
primary or macro command.

1. Type either CREATE or REPLACE on the Command line.
2. Use one of the forms of the C command described previously.
3. Press Enter.
4. On the next panel that PDF displays, type the name of the data set or member

that you want to create or replace.
5. Press Enter. The lines are copied to the data set or member that you specified.

Example
The example in Figure 80 shows how to copy data by using the C with the B
(Before), A (After), or O (Overlay) line commands. Type C in the line command
area of the line you want to copy. Type B in the line command area of the line that
you want the copied line to precede.

C—Copy Lines

168 z/OS V1R2.0 ISPF Edit and Edit Macros

When you press Enter, the line where you typed the C command is copied
preceding the line where you typed the B command, as shown in Figure 81.

Note: If you press Enter before specifying where you want the data to go, the
editor displays a MOVE/COPY pending message at the top of the panel. The
line is not copied until you specify a destination.

Figure 80. Before the C (Copy) Line Command

Figure 81. After the C (Copy) Line Command

C—Copy Lines

Chapter 9. Edit Line Commands 169

COLS—Identify Columns
The COLS line command displays a column identification line.

Syntax
COLS

Description
To display the column identification (=COLS>) line:
1. Type COLS in the line command area of any line.
2. Press Enter.

The column identification line is inserted in the data set or member.

Note: You can use the COLS line command with the BOUNDS line command to
help check and reposition the bounds settings.

To remove the column identification line from the panel:
1. You can either type D in the line command area that contains the =COLS> flag or

type one of the following on the Command line:
v RESET (to reset all flagged lines), or
v RESET SPECIAL (to reset only the special lines).

2. Press Enter.
The =COLS> line is removed from the display.

Example
The example in Figure 82 shows the column identification line displayed with the
boundary definition line. The COLS command is typed in the line command area.

Figure 82. Before the COLS Line Command

COLS—Identify Columns

170 z/OS V1R2.0 ISPF Edit and Edit Macros

When you press Enter, the editor inserts the COLS line, as shown in Figure 83 .

D—Delete Lines
The D (delete) line command deletes lines from your display.

Syntax
D[n]
DD

n The number of lines to be deleted. If you do not type a number, or if the
number you type is 1, only the line on which you type D is deleted.

Description
To delete one or more lines:
1. Type D in the line command area of the line to be deleted. If you also want to

delete one or more lines that immediately follow this line, type a number
greater than 1 after the D command.

2. Press Enter.
The line or lines are deleted.

To delete a block of lines:
1. Type DD in the line command area of both the first and last lines to be deleted.

You can scroll (or use FIND or LOCATE) between typing the first DD and the
second DD, if necessary.

2. Press Enter.
The lines that contain the two DD commands and all of the lines between them
are deleted.

Figure 83. After the COLS Line Command

COLS—Identify Columns

Chapter 9. Edit Line Commands 171

Example
To delete two lines, type D2 in the Command line area of the first line you want to
delete. See Figure 84.

When you press Enter, the editor deletes the two lines specified. See Figure 85.

Figure 84. Before the D (Delete) Line Command

Figure 85. After the D (Delete) Line Command

D—Delete Lines

172 z/OS V1R2.0 ISPF Edit and Edit Macros

F—Show the First Line
The F (show first line) line command redisplays one or more lines at the beginning
of a block of excluded lines. See “Redisplaying Excluded Lines” on page 62 for
more information about excluding lines.

Syntax
F[n]

n The number of lines to be redisplayed. If you do not type a number, or if
the number you type is 1, only one line is redisplayed.

Description
To redisplay the first line or lines of a block of excluded lines:
1. Type F in the line command area next to the dashed line that shows where

lines have been excluded. The message in the dashed line tells you how many
lines are excluded. If you want to redisplay more than one line, type a number
greater than 1 after the F command.

2. Press Enter.
The first line or lines are redisplayed.

Example
The example in Figure 86 shows how to redisplay the excluded lines of a member.
To redisplay the first three lines, type F3 in the line command area.

When you press Enter, the editor displays the first three lines, as shown in
Figure 87 on page 174. Excluded lines do not need to be displayed again before
saving the data. The excluded lines message line is never saved.

Figure 86. Before the F (Show First Line) Line Command

F—Show the First Line

Chapter 9. Edit Line Commands 173

I—Insert Lines
The I (insert) line command inserts one or more lines in your data set or member.
The inserted lines are blank unless you have defined a mask. See “MASK—Define
Masks” on page 181 for more information about defining a mask.

Syntax
I[n]

n The number of blank lines to insert. If you do not type a number, or if the
number you type is 1, only one line is inserted.

Description
To insert one or more lines in a data set or member:
1. Type I in the line command area of the line that the inserted line is to follow. If

you want to insert more than one line, type a number greater than 1 after the I
command.

2. Press Enter. The line or lines are inserted.

If you type any information, even a blank character in the inserted line, the line
becomes part of the source data and is assigned a line number the next time you
press Enter. However, if you do not type any information, the space for the new
line is automatically deleted the next time you press Enter.

If you type information on the last, or only, inserted line and the cursor is still in
the data portion of that line, the editor automatically inserts another line when you
press Enter or a scroll function key, but only if the new inserted line remains on
the panel. If the new line is at the bottom of the panel, the editor automatically
scrolls down so that the new line is displayed at the bottom of the screen.

Figure 87. After the F (Show First Line) Line Command

I—Insert Lines

174 z/OS V1R2.0 ISPF Edit and Edit Macros

Example
Figure 88 shows how to insert lines in a member. To insert three lines, type I3 in
the line command area.

When you press Enter, the editor inserts three lines. See Figure 89.

Figure 88. Before the I (Insert) Line Command

Figure 89. After the I (Insert) Line Command

I—Insert Lines

Chapter 9. Edit Line Commands 175

L—Show the Last Line(s)
The L (show last line) line command redisplays one or more lines at the end of a
block of excluded lines. See “Redisplaying Excluded Lines” on page 62 for more
information about excluding lines.

Syntax
L[n]

n The number of lines to be redisplayed. If you do not type a number, or if
the number you type is 1, only one line is redisplayed.

Description
To redisplay the last line or lines of a block of excluded lines:
1. Type L in the line command area next to the dashed line that shows where

lines have been excluded. The message in the dashed line tells you how many
lines are excluded. If you want to redisplay more than one line, type a number
greater than 1 after the L command.

2. Press Enter. The last line or lines are redisplayed.

Example
Figure 90 shows how to redisplay the last three excluded lines. To redisplay the
last three lines, type L3 in the line command area of the excluded lines.

When you press Enter, the editor redisplays the last three lines. See Figure 91 on
page 177.

Note: Excluded lines do not need to be displayed again before saving the data.
The excluded lines message line is never saved.

Figure 90. Before the L (Show Last Line) Line Command

L—Show the Last Line(s)

176 z/OS V1R2.0 ISPF Edit and Edit Macros

LC—Convert Characters to Lowercase
The LC (lowercase) line command converts characters in a data set or member
from uppercase to lowercase. However, it does not affect the caps mode of the data
that you are editing.

Syntax
LC[n]
LCC
LCLC

n The number of lines to be converted to lowercase. If you do not type a
number, or if the number you type is 1, only the line on which you type LC
is converted to lowercase.

Description
To convert characters on one or more lines to lowercase:
1. Type LC in the line command area of the source code line that contains the

characters you want to convert. If you also want to convert characters on one
or more lines that immediately follow this line, type a number greater than 1
after the LC command.

2. Press Enter. The characters on the source code lines are converted to lowercase.

To convert characters in a block of lines to lowercase:
1. Type LCC in the line command area of both the first and last source code lines

that contain characters that are to be converted. You can scroll (or use FIND or
LOCATE) between typing the first LCC and the second LCC, if necessary.

2. Press Enter. The characters in the source code lines that contain the two LCC
commands and in all of the source code lines between them are converted to
lowercase.

Figure 91. After the L (Show Last Line) Line Command

LC—Convert Characters to Lowercase

Chapter 9. Edit Line Commands 177

See the UC (uppercase) line command and the CAPS primary and macro
commands, which are related, for information about converting characters from
uppercase to lowercase and vice versa.

Example
Figure 92 shows how to use the LC command without any operands. To convert a
line, type LC in the line command area of the line you want to convert.

When you press Enter, the editor converts the characters in the line to lowercase.
See Figure 93 on page 179.

Figure 92. Before the LC (Lowercase) Line Command

LC—Convert Characters to Lowercase

178 z/OS V1R2.0 ISPF Edit and Edit Macros

M—Move Lines
The M (move) line command moves lines from one location to another.

Syntax
M[n]
MM

n The number of lines to be moved. If you do not type a number, or if the
number you type is 1, only the line on which you type M is moved.

Description
To move one or more lines within the same data set or member:
1. Type M in the line command area of the line to be moved. If you want to move

one or more lines that immediately follow this line, type a number greater than
1 after the M command.

2. Next, specify the destination of the line to be moved by using either the A
(after), B (before), or O (overlay) line command. See the descriptions of those
commands if you need more information about them.

3. Press Enter. The line or lines are moved to the new location.

To move a block of lines within the same data set or member:
1. Type MM in the line command area of both the first and last lines to be moved.

You can scroll (or use FIND or LOCATE) between typing the first MM and the
second MM, if necessary.

2. Use the A (after), B (before), or OO (overlay) command to show where the
moved lines are to be placed. Notice that when you use the block form of the
M command (MM) to move and overlay lines, you should also use the block
form of the O command (OO).

Figure 93. After the LC (Lowercase) Line Command

M—Move Lines

Chapter 9. Edit Line Commands 179

3. Press Enter. The lines that contain the two MM commands and all of the lines
between them are moved to the new location.

To move lines to another data set or member:

Note: To move lines into an existing data set or member without replacing that
data set or member, use the MOVE primary or macro command.

1. Type either CREATE or REPLACE on the Command line.
2. Use one of the forms of the M command described previously.
3. Press Enter.
4. On the next panel, type the name of the data set or member that you want to

create or replace.
5. Press Enter. The lines are moved to the data set or member that you specified.

Example
Figure 94 shows how you can move data by using the M with the A (After) line
command. To move a line, type M in the line command area of the line you want to
move. Type a A in the line command area of the line you want the moved line to
follow.

When you press Enter, the editor moves the line where you typed the M command
to a position immediately after the line where you typed the A command, as
shown in Figure 95. If you press Enter before specifying a destination, the editor
displays a MOVE/COPY pending message at the top of the panel. The line is not
moved until you specify a destination.

Figure 94. Before the M (Move) Line Command

M—Move Lines

180 z/OS V1R2.0 ISPF Edit and Edit Macros

MASK—Define Masks
The MASK line command displays the =MASK> line. On this line, you can type
characters that you want to insert into an unformatted data set or member. These
characters, which are called the mask, are inserted whenever you use the I (insert),
TE (text entry), or TS (text split) line commands, or when you edit an empty data
set.

Syntax
MASK

Description
To display the =MASK> line:
1. Type MASK in the line command area of any line.
2. Press Enter. The =MASK> line is displayed.

Initially, the mask contains all blanks. To define a mask:
1. Add characters to or delete characters from the =MASK> line while it is

displayed.
2. Press Enter. The mask is now defined.

Once a mask is defined, the contents of the =MASK> line are displayed whenever a
new line is inserted. This occurs when you use the I (insert), TE (text entry), and
TS (text split) line commands, and when you edit an empty data set. You can
change the mask definition whenever you need to by repeating the preceding
steps.

To remove the =MASK> line from the panel, do one of the following:
v Type D in the line command field that contains the =MASK> flag and press Enter.
v Type RESET on the Command line and press Enter.

Figure 95. After the M (MOVE) Line Command

MASK—Define Masks

Chapter 9. Edit Line Commands 181

v End the edit session by:
– Pressing F3 (if it is defined as the END command), or
– Typing END on the Command line and pressing Enter.

The mask line is never saved as part of the data. However, the mask remains in
effect, even if it is not displayed, until you change it. The contents of the mask are
retained in the current edit profile, and are automatically used the next time you
edit the same kind of data.

The MASK command is ignored in formatted edit mode. You enter formatted edit
mode when you type the name of a previously defined format in the Format
Name field on the Edit Entry panel when beginning an edit session. If you have
defined a mask before entering formatted edit mode, the mask is not retained in
the current edit profile.

Example
In Figure 96, the mask is displayed and the characters /* and */ are typed on the
mask line.

When you insert five lines, the new lines contain the contents of the mask. See
Figure 97 on page 183.

Figure 96. Before the MASK Line Command

MASK—Define Masks

182 z/OS V1R2.0 ISPF Edit and Edit Macros

MD—Make Dataline
The MD (make dataline) line command converts one or more ==MSG>, =NOTE=,
=COLS>, or ====== (information) lines to data so they can be saved as part of your
data set.

Syntax
MD[n]
MDD
MDMD

n The number of lines to be converted to data. If you do not type a number,
or if the number you type is 1, only the line on which you type MD is
converted.

Description
If you enter the MD line command on:
v Any line except a ==MSG>, =NOTE=, =COLS>, or ====== line, it is ignored.
v The TOP OF DATA and BOTTOM OF DATA lines, it is not allowed.
v An excluded line, any converted lines remain excluded and are converted.
v A line that contains a label, the label remains after the line is converted.

For best results, you should set your edit profile to NUMBER OFF and make sure that
the record length of your data set or member is at least 80 before entering the MD
line command. Otherwise, data on the right may be truncated.

To convert one or more lines to data:
1. Type MD in the line command area next to the line that is to be converted. If

you also want to convert one or more lines that immediately follow this line,
type a number greater than 1 after the MD command.

Figure 97. After the MASK Line Command

MD—Make Dataline

Chapter 9. Edit Line Commands 183

2. Press Enter. The lines are converted to data.

To convert a block of lines to data:
1. Type MDD in the line command area of both the first and last lines to be

converted. You can scroll (or use the FIND or LOCATE command) between
typing the first MDD and the second MDD, if necessary.

2. Press Enter. The lines that contain the two MDD commands and all eligible
lines between them are converted to data.

Example
Figure 98 shows how you can convert a block of temporary lines to data by using
the block form of the MD line command. The CLIST model of the DISPLAY service
is inserted into member DEMO1, along with the notes for that model. Type MDD
over the =NOTE= line flags in the line command area of the first and last lines of the
block of lines that you want to convert to data.

When you press Enter, the lines on which the MDD commands are typed and all
of the lines between them are converted to data. See Figure 99 on page 185.

Figure 98. Before the MD (Make Dataline) Line Command

MD—Make Dataline

184 z/OS V1R2.0 ISPF Edit and Edit Macros

O—Overlay Lines
The O (overlay) line command specifies the destination of data that is to be copied
or moved by the C (copy) or M (move) line commands. The data that is copied or
moved overlays blanks in an existing line of data. This allows you to rearrange a
single-column list of items into multiple column, or tabular, format.

Syntax
O[n]
OO

n The number of lines to be overlaid. If you do not type a number, or if the
number you type is 1, only one line is overlaid.

Description
To overlay one or more lines:
1. Type either M or C in the line command area of the line that is to be moved or

copied.
2. Type O in the line command area of the line that the moved or copied line is to

overlay. You can type a number after the O line command to specify the
number of times that the M or C line command is to be performed.

3. Press Enter. The data being moved or copied overlays the specified line or
lines.

To overlay a block of lines:
1. Type either MM or CC in the line command area of the first and last lines of a

block of lines that is to be moved or copied. You can scroll (or use FIND or
LOCATE) between typing the first command and the second command, if
necessary.

Figure 99. After the MD (Make Dataline) Line Command

O—Overlay Lines

Chapter 9. Edit Line Commands 185

2. Type OO in the line command area of the first and last lines that the block of
lines being moved or copied is to overlay. Again, you can scroll (or use FIND
or LOCATE) between typing the first OO and the second OO, if necessary.

3. Press Enter. The lines that contain the two CC or MM commands and all of the
lines between them overlay the lines that contain the two OO commands and
all of the lines between them.

Only blank characters in the lines specified with O or OO are overlaid with
corresponding characters from the source lines. Characters that are not blank are
not overlaid. The overlap affects only those characters within the current column
boundaries.

The number of source and receiving lines need not be the same. If there are more
receiving lines, the source lines are repeated until the receiving lines are gone. If
there are more source lines than receiving lines, the extra source lines are ignored.
The overlay operation involves only data lines. Special lines such as MASK, TABS,
BNDS, and COLS are ignored as either source or receiving lines.

Note: There is no special support for DBCS data handling. You are responsible for
DBCS data integrity when overlaying lines.

Two other line commands that allow you to specify a destination are the A (after)
command and the B (before) command. See “A—Specify an “After” Destination”
on page 161 and “B—Specify a “Before” Destination” on page 164 for more
information.

Example
Figure 100 illustrates the O (overlay) line command. Suppose you were editing a
list in a single left-adjusted column and wanted to place portions of the list
side-by-side. First, using the) (column shift right) command, shift a portion of the
list the appropriate amount to the right to overlay in a multiple column format.
Type MM in the line command area to mark the beginning and end of the block of
lines you want to move. Then type OO in the line command area to mark the
destination of the lines you want to move.

O—Overlay Lines

186 z/OS V1R2.0 ISPF Edit and Edit Macros

When you press Enter, the editor overlays the lines you marked to move on the
destination block. See Figure 101.

R—Repeat Lines
The R (repeat) line command repeats one or more lines in your data set or member
immediately after the line on which the R command is entered.

Figure 100. Before the O (Overlay) Line Command

Figure 101. After the O (Overlay) Line Command

O—Overlay Lines

Chapter 9. Edit Line Commands 187

Syntax
R[n]
RR[n]

n The number of lines to be repeated. If you do not type a number, or the
number you type is 1, only the line on which you type R is repeated.

Description
To repeat one or more lines:
1. Type R in the line command area of the line that is to be repeated. If you want

to repeat the line more than once, type a number that is greater than 1
immediately after the R command.

2. Press Enter. The editor inserts a duplicate copy or copies of the line
immediately after the line that contains the R command.

To repeat a block of lines:
1. Type RR in the line command area of both the first and last lines to be repeated.

You can scroll (or use FIND or LOCATE) between typing the first RR and the
second RR, if necessary.

2. Press Enter. The lines that contain the two RR commands and all of the lines
between them are repeated immediately after the line that contains the second
RR command.

Example

When you press Enter, the editor repeats line 000400 five times. See Figure 103 on
page 189.

Figure 102. Before the R (repeat) Line Command

R—Repeat Lines

188 z/OS V1R2.0 ISPF Edit and Edit Macros

S—Show Lines
The S (show line) line command causes one or more lines in a block of excluded
lines to be redisplayed. The redisplayed lines have the leftmost indentation levels;
they contain the fewest leading blanks. See “Redisplaying Excluded Lines” on
page 62 for more information about redisplaying excluding lines.

Syntax
S[n]

n The number of lines to be redisplayed. If there are only 2 excluded lines,
and you do not type a number, or if the number you type is 1, both lines
are redisplayed. If more than 2 lines are excluded, only one line is
redisplayed if you do not type a number, or if the number you type is 1.

Description
To redisplay a line or lines of a block of excluded lines:
1. Type S in the line command area next to the dashed line that shows where a

line or lines has been excluded. The message in the dashed line tells you how
many lines are excluded.
If you want to redisplay more than one line, type a number greater than 1 after
the S command. If you type S3, for example, the three lines with the leftmost
indentation level are displayed again. If more than three lines exist at this
indentation level, only the first three are displayed.

2. Press Enter. The line or lines with the fewest leading blanks are redisplayed.

Example
Figure 104 shows how to redisplay a member’s excluded lines. To redisplay four
lines, type S4 in the line command area.

Figure 103. After the R (Repeat) Line Command

S—Show Lines

Chapter 9. Edit Line Commands 189

When you press Enter, the four lines are redisplayed. See Figure 105.

Note: Excluded lines do not need to be displayed again before saving the data.
The excluded lines message line is never saved.

Figure 104. Before the S (Show) Line Command

Figure 105. After the S (Show) Line Command

S—Show Lines

190 z/OS V1R2.0 ISPF Edit and Edit Macros

TABS—Control Tabs
The TABS line command:
v Displays the =TABS> (tab-definition) line
v Defines tab positions for software, hardware, and logical tabs.

Use PROFILE to check the setting of tabs mode and the logical tab character. See
“Using Tabs” on page 68 if you need more information about using tabs.

Syntax
TABS

Description
When you type TABS in the line command area, =TABS> is displayed along with any
previously defined tab positions. To remove the =TABS> line, use the D (delete) line
command or the RESET primary command, or end the edit session. The =TABS>
line is never saved as part of the data.

The tab definitions remain in effect, even if they are not displayed, until you
change them. Tab definitions are retained in the current edit profile, and are
automatically used the next time you edit the same kind of data.

Examples
This section contains two examples: one using software and hardware tabs, and
one using software tab fields.

Using Software and Hardware Tabs
Edit a data set, type TABS ALL on the Command line, and press Enter:
Command ===> TABS ALL

Now, type COLS in the line command area and press Enter again. A partial =COLS>
line with positions 9 through 45 is shown in the following example:
=COLS> -1----+----2----+----3----+----4----+

Next use the TABS line command to define software and hardware tabs. Type TABS
in the line command area beneath the =COLS> line and press Enter.

When the =TABS> line appears, type hyphens in columns 15, 25, and 35, and
asterisks in columns 20, 30, and 40, using the =COLS> line to find these columns:
=COLS> -1----+----2----+----3----+----4----+
=TABS> - * - * - *

With the preceding =TABS> line, you can move the cursor to a software tab position
(hyphen) by pressing Enter, even if another character already occupies that
position. To move the cursor to a hardware tab position (one space to the right of
an asterisk), press either the Tab Forward or Tab Backward key. See Figure 106.

TABS—Control Tabs

Chapter 9. Edit Line Commands 191

Using Software Tab Fields
You can define a software tab field by typing underscores or hyphens in two or more
consecutive columns. This moves the cursor to the first non-blank character in the
field. If the field contains all blanks, the cursor moves to the beginning of the field.

Using the example in the preceding section, create a software tab field by typing
hyphens in columns 10 through 14. Then type some data inside the field and at
each of the other tab positions, but below the =TABS> line:
=COLS> -1----+----2----+----3----+----4----+
=TABS> ------ * - * - *

123 456 789_

Notice in the preceding example that the cursor is positioned to the right of data
string 789. With the cursor in this position, press Enter. The cursor moves under
the 1 in the 123 data string, not to column 10, which is the beginning of the field.

TE—Text Entry
The TE (text entry) line command provides one very long line wrapped around
many lines of the display to allow power typing for text entry. The editor does the
formatting for you.

The TE line command is different from the I (insert) line command. The I
command inserts a specified number of separate, blank lines as well as the mask, if
there is one, as you typed it. With the TE command, the input data is formatted,
only mask line characters outside the current boundaries are added to the
formatted lines.

Figure 106. TAB Line Command Example. A =TABS> line with four software tabs and one
hardware tab defined.

TABS—Control Tabs

192 z/OS V1R2.0 ISPF Edit and Edit Macros

Syntax
TE[n]

n The number of blank lines to be added. If you do not type a number, the
display is filled with blanks from the line following the TE to the bottom
of the screen.

Description
Before you enter text entry mode, consider the following:
v If you are going to be typing text in paragraph form, make sure caps mode is

off. Otherwise, when you press Enter, your text changes to all caps.
v You may want to turn off number mode to prevent sequence numbers from

writing over any of your text.
v Make sure the bounds setting is where you want it so that the text will flow

correctly when you end text entry mode.

To enter text entry mode:
1. Type TE in the line command area. If you want to specify several blank lines,

type a number greater than 1 immediately after the TE command. If the
number that you type is greater than the number of lines remaining on the
display, the vertical bar that shows where you will run out of room is not
displayed and the keyboard does not lock at the last character position on the
display. You can scroll down to bring the additional blank text entry space into
view.

2. Press Enter. The editor inserts a single continuous blank area for the specified
number of lines or to the bottom of the display.

To begin a new paragraph:
1. Use the return (Enter), cursor movement, or Tab keys to advance the cursor

enough spaces to leave one blank line on the display.

If there are insufficient blank spaces on the display, the keyboard locks when you
try to type beyond the last character position. A vertical bar (|) is displayed above
the cursor at the locked position.

To generate more blank spaces:
1. Press the Reset key to unlock the keyboard.
2. Press Enter.

To end text entry mode:
1. Press Enter. The data is flowed together into a paragraph and any embedded

blanks are preserved. The left and right sides of the paragraph are determined
by the current bounds.

See “Word Processing” on page 65 and “Entering Text (Power Typing)” on page 67
if you need more information.

Example
Figure 107 shows how the TE (text entry) command allows you to use power
typing and word wrap to input text. The edit profile is set to NUMBER OFF and CAPS
OFF. Also, the left bound is set to 1 and the right bound is set to 72. A new data set

TE—Text Entry

Chapter 9. Edit Line Commands 193

member called CHAP10 has been started and the TE command is typed in the line
command area.

When you press Enter, the editor begins text entry mode. The cursor shows where
text input begins and the vertical bar in the lower-right corner of the panel shows
how much room you have to work with. See Figure 108.

Figure 107. Before the TE (Text Entry) Line Command

Figure 108. After the TE (Text Entry) Line Command

TE—Text Entry

194 z/OS V1R2.0 ISPF Edit and Edit Macros

When you enter text, some of the words are split between lines, with part of the
word at the right end of a line and the remainder of the word at the beginning of
the next line. See Figure 109.

When you press Enter, the editor exits text entry mode. As shown in Figure 110,
the text flows between the bounds settings and the line numbers are displayed in
the line command area.

Figure 109. Sample Text During Text Entry Mode.

Figure 110. Sample Text After Text Entry Mode.

TE—Text Entry

Chapter 9. Edit Line Commands 195

TF—Text Flow
The TF (text flow) line command restructures paragraphs. This is sometimes
necessary after deletions, insertions, or splitting.

Syntax
TF[n]

n The column number to which the text should be flowed. The default is the
panel width when default boundaries are in effect. If you are using
nondefault bounds, the right boundary is used. This is different from the
TFLOW macro command, which always defaults to the right boundary.

If a number greater than the right boundary is specified, the right
boundary is used.

Description
To flow text:
1. Type TF in the line command area of the line at which you want the text to

begin flowing. If you want to specify the rightmost column position for the
restructured text, type a number greater than 1 immediately after the TF
command.

2. Press Enter. The text is flowed from the beginning of that line to the end of the
paragraph.

See “Word Processing” on page 65 and “Formatting Paragraphs” on page 65 for
more information.

Example
Figure 111 demonstrates text restructuring. The bounds are set at columns 1 and 72.
A TF50 command is typed on line 000041.

TF—Text Flow

196 z/OS V1R2.0 ISPF Edit and Edit Macros

When you press Enter, the editor takes all text in that paragraph between columns
1 and 72 and reformats it between columns 1 and 50. See Figure 112.

TS—Text Split
The TS (text split) line command moves part or all of a line of text to the following
line. This makes it easier for you to add new material to existing text.

Figure 111. Before the TF (Text Flow) Line Command

Figure 112. After the TF (Text Flow) Line Command

TF—Text Flow

Chapter 9. Edit Line Commands 197

Syntax
TS[n]

n The number of blank lines to be inserted between the split lines. If you do
not type a number, or if the number that you type is 1, the editor inserts
only one blank line.

Description
To split a line:
1. Type TS in the line command area of the line you would like to split. If you

want to insert more than one blank line between the split lines, type a number
greater than 1 immediately after the TS command.

2. Move the cursor to the desired split point.
3. Press Enter.

To rejoin lines, use the TF (text flow) line command. See “TF—Text Flow” on
page 196 for more information.

For more information about splitting lines and other word processing commands,
see “Word Processing” on page 65 and “Splitting Lines” on page 66.

Examples
Figure 113 shows how to split text and to insert blank lines. To split the text and
insert three lines, type TS3 in the line command area of the line you want to split
and place the cursor where you want the line split.

When you press Enter, the line is split at the cursor position and the editor inserts
the number of blank lines specified, as shown in Figure 114 on page 199.

Figure 113. Before TS (Text Split) Line Command

TS—Text Split

198 z/OS V1R2.0 ISPF Edit and Edit Macros

UC—Convert Characters to Uppercase
The UC (uppercase) line command converts characters in a data set or member
from lowercase to uppercase. However, it does not affect the caps mode of the data
that you are editing.

Syntax
UC[n]
UCC
UCUC

n The number of lines to be converted to uppercase. If you do not type a
number, or if the number you type is 1, only the line on which you type UC
is converted to uppercase.

Description
To convert characters on one or more lines to uppercase:
1. Type UC in the line command area of the source code line that contains the

characters that you want to convert. To convert characters on lines following
this one, type a number greater than 1 after the UC command.

2. Press Enter. The characters on the source code line or lines are converted to
uppercase.

To convert characters in a block of lines to uppercase:
1. Type UCC in the line command area of both the first and last source code lines

that contain characters that are to be converted. You can scroll (or use FIND or
LOCATE) between typing the first UCC and the second UCC, if necessary.

2. Press Enter. The characters in the source code lines that contain the two UCC
commands and in all of the source code lines between them are converted to
uppercase.

Figure 114. After TS (Text Split) Line Command

UC—Convert Characters to Uppercase

Chapter 9. Edit Line Commands 199

See the LC (lowercase) line command and the CAPS primary and macro
commands on pages 157, 202, and 298 for information about converting characters
from uppercase to lowercase and vice versa.

Example
Figure 115 shows how to convert lines of text to uppercase. To convert lines of text
to uppercase, place the UC command and the number of lines you want to convert
in the line command area where you want the conversion to start.

When you press Enter, the editor converts the lines specified to uppercase. See
Figure 116 on page 201.

Figure 115. Before the UC (Uppercase) Line Command

UC—Convert Characters to Uppercase

200 z/OS V1R2.0 ISPF Edit and Edit Macros

X—Exclude Lines
The X (exclude) line command replaces one or more lines on the panel with a
dotted line. The dotted line contains a message that specifies how many lines have
been excluded.

The excluded lines are not erased. They are simply hidden from view and can still
be affected by edit line, primary, and macro commands.

Syntax
X[n]
XX

n The number of lines to be excluded. If you do not type a number, or if the
number that you type is 1, PDF excludes only the line on which you type
the X command.

Description
To exclude one or more lines:
1. Type X in the line command area of the line that you want to exclude. If you

want to exclude one or more lines that immediately follow this line, type a
number greater than 1 immediately after the X command.

2. Press Enter. The lines are excluded from the panel.

To exclude a block of lines:
1. Type XX in the line command area of both the first and last lines that you want

to exclude. You can scroll (or use FIND or LOCATE) between typing the first XX
and the second XX, if necessary.

2. Press Enter. The lines that contain the two XX commands and all of the lines
between them are excluded.

Figure 116. After the UC (Uppercase) Line Command

X—Exclude Lines

Chapter 9. Edit Line Commands 201

See “Excluding Lines” on page 61 for more information on using this command.

Example
Figure 117 shows how lines are excluded from a member. To exclude six lines, type
X6 in the line command area.

When you press Enter, the editor excludes the specified lines. See Figure 118 on
page 203.

Figure 117. Before the X (Exclude) Line Command

X—Exclude Lines

202 z/OS V1R2.0 ISPF Edit and Edit Macros

Figure 118. After the X (Exclude) Line Command

X—Exclude Lines

Chapter 9. Edit Line Commands 203

X—Exclude Lines

204 z/OS V1R2.0 ISPF Edit and Edit Macros

Chapter 10. Edit Primary Commands

Primary commands affect the entire data set being edited, whereas line commands
usually affect only a single line or block of lines. To enter a primary command, do
either of the following:
v Type the command on the Command line and press Enter
v Press the function key to which the command is assigned.

Most primary commands can be abbreviated. In fact, many can be typed as a
single letter, such as L for LOCATE or F for FIND. For a list of command
abbreviations, see Appendix A. Abbreviations for Commands and Other Values.

Each command description consists of the following information:

Syntax
A syntax diagram for coding the command, including a description of any
required or optional operands.

Description
A summary of the function and operation of the command. This definition
also refers to other commands that can be used with this command.

Example
Sample usage of the command.

Edit Primary Command Notation Conventions
The syntax of the edit primary commands uses the following notation conventions:

Uppercase
Uppercase commands or operands must be spelled as shown (in either
uppercase or lowercase).

Lowercase
Lowercase operands are variables; substitute your own values.

Underscore
Underscored operands are the system defaults.

Brackets ([])
Operands in brackets are optional.

Stacked operands
Stacked operands show two or more operands from which you can select.
If you do not choose any, the Editor uses the default operand.

Braces ({ })
Braces show two or more operands from which you must select one. .

OR (|)
The OR (|) symbol shows two or more operands from which you must
select one.

Edit Primary Command Summary
The following table summarizes the edit primary commands. See the complete
description of the commands on the referenced page.

© Copyright IBM Corp. 1984, 2001 205

Table 5. Summary of the Primary Commands

Command Syntax topic Description

AUTOLIST [ON]
[OFF]

“AUTOLIST—Create a Source
Listing Automatically” on

page 209

Controls the automatic printing
of data to the ISPF list data set.

AUTONUM [ON]
[OFF]

“AUTONUM—Number Lines
Automatically” on page 211

Controls the automatic
renumbering of data when it is
saved.

AUTOSAVE [ON]
[OFF PROMPT]
[OFF NOPROMPT]

“AUTOSAVE—Save Data
Automatically” on page 213

If the data is changed,
automatically saves it when you
issue an END command.

BOUNDS [left-col right-col] “BOUNDS—Control the Edit
Boundaries” on page 214

Sets the left and right boundaries.

BROWSE [member] “BROWSE—Browse from within
an Edit Session” on page 216

Browse a data set or member
without leaving your current edit
session.

BUILTIN cmdname “BUILTIN—Process a Built-In
Command” on page 215

Processes a built-in command
even if a macro with the same
name has been defined.

CANCEL “CANCEL—Cancel Edit
Changes” on page 216

Ends the edit session without
saving any of the changes.

CAPS [ON]
[OFF]

“CAPS—Control Automatic
Character Conversion” on

page 217

Sets caps mode.

CHANGE string-1 string-2 [range]
[NEXT] [CHARS]
[X] [col-1 [col-2]]
[ALL]
[PREFIX] [NX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

“CHANGE—Change a Data
String” on page 218

Changes a data string into
another string.

COMPARE {dsname|NEXT|SESSION|*}
[{EXCLUDE} {SAVE} {SYSIN}]

“COMPARE—Edit Compare” on
page 220

Compares library member or data
set with the data being edited.

COPY [member] [AFTER label]
[(member)][BEFORE label]
[data set name (member)][linenum range]
[data set name]

“COPY—Copy Data” on page 223 Copies a library member or data
set into the data being edited.

CREATE [member] [range]
(member) [range]
[data_set(member)] [range]
[data_set name]

“CREATE—Create Data” on
page 227

Writes the data you are editing
into a library member or data set
only if it does not already exist.

CUT [lptr-range] [DEFAULT | clipboardname]
[REPLACE] [DISPLAY]

“CUT—Cut and Save Lines” on
page 231

Saves lines to a clipboard for later
retrieval by PASTE command.

DEFINE name {MACRO CMD }
{MACRO PGM }
{ALIAS name-2}
{NOP }
{RESET }
{DISABLED }

“DEFINE—Define a Name” on
page 232

v Assigns an alias to a macro or
built-in command.

v Disables the use of a macro or
built-in command.

v Identifies a macro that replaces
a built-in command of the
same name.

v Identifies programs that are
edit macros.

Edit Primary Command Summary

206 z/OS V1R2.0 ISPF Edit and Edit Macros

Table 5. Summary of the Primary Commands (continued)

Command Syntax topic Description

DELETE {ALL X | NX}
{range X | NX}
{ALL range }

“DELETE—Delete Lines” on
page 234

Deletes lines from the data you
are editing.

EDIT [member] “EDIT—Edit from within an Edit
Session” on page 235

Edits a data set or member
without leaving your current edit
session (recursive edit).

EDITSET
EDSET

“EDITSET—Display the Editor
Settings Dialog” on page 237

Causes the Edit Settings panel to
be displayed.

END “END—End the Edit Session” on
page 241

Ends the current edit session.

EXCLUDE string [range] [NEXT]
[CHARS] [col-1 [col-2]]

[ALL] [PREFIX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

“EXCLUDE—Exclude Lines from
the Display” on page 242

Excludes lines from the panel.

FIND string [range] [NEXT]
[CHARS] [X] [col-1 [col-2]]
[ALL] [PREFIX]
[NX]
[FIRST] [SUFFIX]
[LAST] [WORD]

[PREV]

“FIND—Find a Data String” on
page 243

Finds a data string.

FLIP [label-range] “FLIP—Reverse Exclude Status of
Lines” on page 245

Reverses the exclude status of a
specified range of lines in a file
or all the lines in the file.

HEX [ON DATA]
[ON VERT]
[OFF]

“HEX—Display Hexadecimal
Characters” on page 247

Specifies whether the
hexadecimal form of the data
should be displayed.

HILITE [ON] [AUTO]
[RESET]
[PAREN]
[FIND]
[CURSOR]
[SEARCH]
[DISABLED]

[OFF] [DEFAULT]
[LOGIC] [OTHER]
[IFLOGIC] [ASM]
[DOLOGIC] [BOOK]
[NOLOGIC] [C]

[COBOL]
[DTL]
[JCL]
[PANEL]
[PASCAL]
[PLI]
[REXX]
[SKEL]

“HILITE—Enhanced Edit
Coloring” on page 250

Highlights, in user-specified
colors, numerous
language-specific constructs,
program logic features, the
phrase containing the cursor, and
any strings that match the
previous FIND operation or those
that would be found by an
RFIND or RCHANGE request.
Can also be used to set default
colors for the data area in
non-program files and for any
characters typed since the
previous Enter or function key
entry.

IMACRO {name | NONE} “IMACRO—Specify an Initial
Macro” on page 253

Saves the name of an initial
macro in the edit profile.

LEVEL num “LEVEL—Specify the
Modification Level Number” on

page 254

Sets the modification level
number to be kept as part of the
PDF library statistics.

Edit Primary Command Summary

Chapter 10. Edit Primary Commands 207

Table 5. Summary of the Primary Commands (continued)

Command Syntax topic Description

LOCATE {label | line-number}

LOCATE [FIRST] {CHANGE } [range]
[LAST] {COMMAND }
[NEXT] {ERROR }
[PREV] {EXCLUDED}

{LABEL }
{SPECIAL }

“LOCATE—Locate a Line” on
page 255

Locates a line.

MODEL [model-name [qualifier...]]
{AFTER label} [NOTES]
{BEFORE label} [NONOTES]

MODEL [CLASS [class-name]]

“MODEL—Copy a Model into
the Current Data Set” on page 257

Copies a model into the data you
are editing or defines the current
model class.

MOVE [member] [AFTER label]
(member) [BEFORE label]
[data set name (member)]
[data set name]

“MOVE—Move Data” on
page 260

Moves a library member or data
set into the data you are editing.

NONUMBER “NONUMBER—Turn Off
Number Mode” on page 264

Turns off number mode.

NOTES [ON]
[OFF]

“NOTES—Display Model Notes”
on page 264

Specifies whether the MODEL
command is to display notes.

NULLS [ON STD]
[ON ALL]
[OFF]

“NULLS—Control Null Spaces”
on page 265

Controls null spaces.

NUMBER [ON]
[STD] [DISPLAY]

[OFF] [COBOL]
[STD COBOL]
[NOSTD]
[NOCOBOL]
[NOSTD NOCOBOL]

“NUMBER—Generate Sequence
Numbers” on page 266

Generates sequence numbers.

PACK [ON]
[OFF]

“PACK—Compress Data” on
page 267

Specifies whether data is to be
stored normally or compressed.

PASTE [clipboardname] [AFTER label]
[BEFORE label] [KEEP]

“PASTE—Move or Copy Lines
from Clipboard” on page 267

Moves or copies lines from a
clipboard into an edit session.

PRESERVE [ON]
[OFF]

“PRESERVE - Enable Saving of
Trailing Blanks” on page 269

Specifies whether trailing blanks
should be saved when data is
stored.

PROFILE [name] [number]

PROFILE {LOCK | UNLOCK}

PROFILE RESET

“PROFILE—Control and Display
Your Profile” on page 269

Controls and displays your
profile.

RCHANGE “RCHANGE—Repeat a Change”
on page 272

Repeats the most recently
processed CHANGE command.

RECOVERY [ON | OFF]
[WARN | NOWARN | SUSP]

“RECOVERY—Control Edit
Recovery” on page 273

Controls edit recovery.

RENUM [ON]
[STD] [DISPLAY]

[COBOL]
[STD COBOL]

“RENUM—Renumber Data Set
Lines” on page 274

Renumbers data set lines.

Edit Primary Command Summary

208 z/OS V1R2.0 ISPF Edit and Edit Macros

Table 5. Summary of the Primary Commands (continued)

Command Syntax topic Description

REPLACE [member] [range]
REPLACE [data set name (member)] [range]
REPLACE [data set (member)] [range]
REPLACE [data set] [range]

“REPLACE—Replace Data” on
page 276

Writes the data you are editing
into a library member even if it
already exists.

RESET [CHANGE] [range]
[COMMAND]
[ERROR]
[EXCLUDED]
[FIND]
[LABEL]
[SPECIAL]

“RESET—Reset the Data Display”
on page 280

Resets the data display.

RFIND “RFIND—Repeat Find” on
page 282

Locates the data string defined by
the most recently processed
SEEK, FIND, or CHANGE
command, or excludes a line that
contains the data string from the
previous EXCLUDE command.

RMACRO {name | NONE} “RMACRO—Specify a Recovery
Macro” on page 282

Saves the name of a recovery
macro in the edit profile.

SAVE “SAVE—Save the Current Data”
on page 282

Saves the current data without
ending the edit session.

SETUNDO [STORAGE | RECOVER]
[OFF]

“SETUNDO—Set the UNDO
Mode” on page 283

Sets the UNDO mode.

SORT [range] [X]
[sort-field1 ... sort-field5]
[NX]

“SORT—Sort Data” on page 285 Puts data in a specified order.

STATS [ON]
[OFF]

“STATS—Generate Library
Statistics” on page 287

Specifies whether PDF library
statistics are to be created when
this member is saved.

SUBMIT [range] “SUBMIT—Submit Data for Batch
Processing” on page 287

Submits the data you are editing
for batch processing.

TABS [ON] [STD]
[OFF] [ALL]

[tab-character]

“TABS—Define Tabs” on page 288 Defines tab positions for
software, hardware, and logical
tabs.

UNDO “UNDO—Reverse Last Edit
Interaction” on page 290

Removes the data modifications
of a previous interaction.

UNNUMBER “UNNUMBER—Remove
Sequence Numbers” on page 292

Removes sequence numbers.

VERSION num “VERSION—Control the Version
Number” on page 294

Sets the version number to be
kept as part of the PDF library
statistics.

VIEW [member] “VIEW—View from within an
Edit Session” on page 295

View a data set or member
without leaving your current edit
session.

AUTOLIST—Create a Source Listing Automatically
The AUTOLIST primary command sets autolist mode, which controls the
automatic printing of data to the ISPF list data set.

Edit Primary Command Summary

Chapter 10. Edit Primary Commands 209

Syntax
AUTOLIST [ON]

[OFF]

ON Generates a source listing in the ISPF list data set for eventual printing
when you end an edit session in which you changed and saved data.

OFF No source listing is generated.

Description
Autolist mode is saved in the edit profile. To check the current setting of autolist
mode:
1. On the Command line, type:

Command ===> PROFILE 3

2. Press Enter. The third line of the edit profile shows the autolist mode setting.

To turn on autolist mode:
1. On the Command line, type:

Command ===> AUTOLIST ON

2. Press Enter.

To turn off autolist mode:
1. On the Command line, type:

Command ===> AUTOLIST OFF

2. Press Enter.

Example
This example shows how to use the AUTOLIST command to save a copy of a
source code listing in the ISPF list data set and to print the list data set.
1. As you edit a data set, you decide to store a listing of the source code in the

ISPF list data set so that you can print it later. Enter the PROFILE 3 command
to display the first 3 lines of the edit profile. This shows you whether autolist
mode is on or off.
Command ===> PROFILE 3

2. You can see from the edit profile that autolist mode is off:
=PROF>PLI (VARIABLE - 72)....RECOVERY ON....NUMBER OFF....................
=PROF>CAPS OFF....HEX OFF....NULLS OFF....TABS OFF........................
=PROF>AUTOSAVE ON....AUTONUM OFF....AUTOLIST OFF....STATS ON..............

3. Enter the AUTOLIST ON command to turn on autolist mode:
Command ===> AUTOLIST ON

The edit profile changes accordingly:
=PROF>PLI (VARIABLE - 72)....RECOVERY ON....NUMBER OFF....................
=PROF>CAPS OFF....HEX OFF....NULLS OFF....TABS OFF........................
=PROF>AUTOSAVE ON....AUTONUM OFF....AUTOLIST ON....STATS ON...............

4. After editing the data set, save your changes by entering the END command.
The changes are saved because, as you can see in the preceding partial edit
profile, autosave mode is on.
Command ===> END

The PDF component creates an ISPF list data set with the contents of the data
set member that you were editing. The name of the list data set is:

AUTOLIST

210 z/OS V1R2.0 ISPF Edit and Edit Macros

prefix.user-id.SPFn.LIST

Note: Refer to ISPF User’s Guide for information about list data sets.
5. Before leaving the PDF component, use the jump function to go to option 0.2

and check the log/list defaults:
Command ===> =0.2

The Log and List Defaults panel shows the current default settings for the
handling of log and list data sets.

6. Because you want to print the list data set, make sure that the PD option is
entered in the Process Option field under the List Data Set Default Options
heading:
Process option ===> PD

Note: Also, make sure that the appropriate JCL information is entered at the
bottom of the Log and List Defaults panel so that the print job is
submitted.

7. You can now end the session, knowing that the list data set will be printed:
Command ===> =X

8. When the session ends, TSO displays a message that says the print job has
been submitted.

AUTONUM—Number Lines Automatically
The AUTONUM primary command sets autonum mode, which controls the
automatic renumbering of data when it is saved.

Syntax
AUTONUM [ON]

[OFF]

ON Turns on automatic renumbering. When number mode is also on, the data
is automatically renumbered when it is saved.

OFF Turns off automatic renumbering. Data is not renumbered.

Description
When number mode is on, the first line of a data set or member is normally line
number 000100, the second number is 000200, and so forth. However, as lines are
inserted and deleted, the increment between line numbers can change.

For example, you might think that when a line is inserted between 000100 and
000200, line 000200 would be given the number 000300 and the new line would
become 000200. Instead, the existing lines retain their numbers and the new line is
given line number 000110.

Therefore, if the original line number increments are important to you, the
AUTONUM command renumbers your lines automatically so that the original
increments are maintained.

Autonum mode is saved in the edit profile. To check the current settings of
number mode and autonum mode:
1. On the Command line, type:

Command ===> PROFILE 3

AUTOLIST

Chapter 10. Edit Primary Commands 211

2. Press Enter. The first line of the edit profile shows the number mode setting
and the third line shows the autonum mode setting.

To turn on autonum mode:
1. On the Command line, type:

Command ===> AUTONUM ON

2. Press Enter.

To turn off autonum mode:
1. On the Command line, type:

Command ===> AUTONUM OFF

2. Press Enter.

Example
This example shows a practical application of AUTONUM command usage. You
have been editing a data set with number mode on.

Note: If you are editing a data set or member with number mode off and then
decide to turn number mode on, make sure that columns 1 through 6 of
your data set are blank. Otherwise, the sequence numbers created by the
NUMBER command can overlay any of your data in columns 1 through 6.
Use either the COLUMN SHIFT or DATA SHIFT line command to indent
the data.

You now want to end the edit session. However, since you had to insert and delete
many lines, your line numbering is no longer uniform. Therefore, you decide to
use autonum mode so that the next time you edit this data set the line numbers
will be correct.
1. First, check the edit profile to see whether autonum mode is already on by

entering the PROFILE 3 command to display the first 3 lines of the edit profile.
Command ===> PROFILE 3

2. You can see from the edit profile that autonum mode is off:
=PROF>PLI (VARIABLE - 72)....RECOVERY ON....NUMBER OFF....................
=PROF>CAPS OFF....HEX OFF....NULLS OFF....TABS OFF........................
=PROF>AUTOSAVE ON....AUTONUM OFF....AUTOLIST OFF....STATS ON..............

3. Enter the AUTONUM ON command to turn on autonum mode:
Command ===> AUTONUM ON

The edit profile changes accordingly:
=PROF>PLI (VARIABLE - 72)....RECOVERY ON....NUMBER OFF....................
=PROF>CAPS OFF....HEX OFF....NULLS OFF....TABS OFF........................
=PROF>AUTOSAVE ON....AUTONUM ON....AUTOLIST ON....STATS ON................

4. After editing the data set, save your changes by entering the END command.
The changes will be saved because, as you can see in the preceding partial edit
profile, autosave mode is on.
Command ===> END

The PDF component saves the data set that you were editing, along with any
changes. The next time you edit the data set, the line numbers will have the
proper increments.

AUTONUM

212 z/OS V1R2.0 ISPF Edit and Edit Macros

AUTOSAVE—Save Data Automatically
The AUTOSAVE primary command sets autosave mode, which controls whether
changed data is saved when you enter END.

Syntax
AUTOSAVE [ON]

[OFF [PROMPT]]
[OFF NOPROMPT]

ON Turns autosave mode on. When you enter END, any changed data is
saved.

OFF PROMPT
Turns autosave mode off with the PROMPT operand. You are notified that
changes have been made and that either the SAVE command (followed by
END) or CANCEL must be used. When you use AUTOSAVE PROMPT by
itself, it implies the OFF command.

OFF NOPROMPT
Turns autosave mode off with the NOPROMPT operand. You are not
notified and the data is not saved when you issue an END command. END
becomes an equivalent to CANCEL. Use the NOPROMPT operand with
caution.

Description
Data is considered changed if you have operated on it in any way that could cause
a change. Shifting a blank line or changing a word to the same word does not
actually alter the data, but the editor considers this data changed. When you enter
SAVE, the editor resets the change status.

Autosave mode, along with the PROMPT operand, is saved in the edit profile. To
check the current setting of autosave mode:
1. On the Command line, type:

Command ===> PROFILE 3

2. Press Enter. The third line of the edit profile shows the autosave mode setting.

To turn on autosave mode:
1. On the Command line, type:

Command ===> AUTOSAVE

Note: This is the equivalent of entering AUTOSAVE ON.
2. Press Enter. The next time you enter END, any changes that you made to the

data set or member that you were editing are saved.

To turn off autosave mode:
1. On the Command line, type:

Command ===> AUTOSAVE OFF

Note: This is the equivalent of entering AUTOSAVE OFF PROMPT.
2. Press Enter. The next time you enter END when a data set or member has been

changed, the editor prompts you to specify whether you want changes to the
data set or member saved (SAVE) or not saved (CANCEL). However, if no
changes have been made to the data set or member, the edit session ends
without a prompt.

AUTOSAVE

Chapter 10. Edit Primary Commands 213

To turn off autosave mode and specify that you do not want to be prompted when
data has changed:
1. On the Command line, type:

Command ===> AUTOSAVE OFF NOPROMPT

2. Press Enter. The next time you enter END when a data set or member has been
changed, the edit session ends without saving your changes, just as if you had
entered CANCEL. You are not prompted to save the changes.

For more information on saving data, see the CANCEL and END primary
commands, and the DATA_CHANGED, CANCEL, and END macro commands.

Example
This example shows a practical application of AUTOSAVE usage.
1. You have been editing a data set member and now want to end the edit

session. Enter END:
Command ===> END

2. The member that you were editing remains with the following message in the
upper-right corner:
DATA CHANGED-SAVE/CANCEL

This message implies that autosave mode in the edit profile is set to AUTOSAVE
OFF PROMPT. You are prompted to enter either SAVE to save your changes, or
CANCEL to end the edit session without saving your changes.

You also have the option to change autosave mode in the edit profile to
AUTOSAVE ON. By doing so, the next time you enter END, your changes will be
saved and the edit session will end.

3. You decide to turn on autosave mode:
Command ===> AUTOSAVE ON

4. Then you enter END again to save your changes and end the edit session.
Command ===> END

BOUNDS—Control the Edit Boundaries
The BOUNDS primary command sets the left and right boundaries and saves them
in the edit profile.

Syntax
BOUNDS [left-col right-col]

left-col
The left boundary column to be set.

right-col
The right boundary column to be set.

You cannot specify the same column for both boundaries. An asterisk (*) can be
used to represent the current value of the boundary.

Description
The BOUNDS primary command provides an alternative to setting the boundaries
with the BOUNDS line command or macro command; the effect on the member or

AUTOSAVE

214 z/OS V1R2.0 ISPF Edit and Edit Macros

data set is the same. However, if you use both the BOUNDS primary command
and the BOUNDS line command in the same interaction, the line command
overrides the primary command.

To reset the boundaries to the default columns:
1. On the Command line, type:

Command ===> BOUNDS

2. Press Enter. The boundaries are reset to the default columns.

See “Edit Boundaries” on page 26 for more information, including tables that show
commands affected by bounds settings and default bounds settings for various
types of data sets.

Examples
To set the left boundary to 1 and the right boundary to 72, type:
Command ===> BOUNDS 1 72

To set the left boundary to 10 and leave the right as is, type:
Command ===> BOUNDS 10 *

BUILTIN—Process a Built-In Command
You can use the BUILTIN primary command with edit macros and the DEFINE
command to process a built-in edit primary command, even if a macro has been
defined with the same name.

Syntax
BUILTIN cmdname

cmdname The built-in command to be processed.

Description
To process a built-in primary command instead of a command with the same name
that has been defined as an alias:
1. On the Command line, type:

Command ===> BUILTIN cmdname

where cmdname is the name of a primary command.
2. Press Enter. The edit primary command is processed.

Example
This example shows a practical application of BUILTIN command usage.
1. You have a macro named MACEND that you have created. You want to run

your MACEND macro instead of the PDF component’s built-in END command.
Enter the following:
Command ===> DEFINE END ALIAS MACEND

Note: If the END command is issued in your MACEND macro without being
preceded by the BUILTIN macro command, the MACEND macro would
be run again, resulting in a loop.

2. Enter the following to run your MACEND macro:
Command ===> END

BOUNDS

Chapter 10. Edit Primary Commands 215

3. To end the edit session without redefining END, use BUILTIN, as follows:
Command ===> BUILTIN END

This command issues the PDF component’s built-in END command instead of
your MACEND macro.

BROWSE—Browse from within an Edit Session
The BROWSE primary command allows you to browse a sequential data set or
partitioned data set member during your current edit session.

Syntax
BROWSE [member]

member
A member of the ISPF library or other partitioned data set you are
currently editing. You may enter a member pattern to generate a member
list.

Description
To browse a data set or member during your current edit session:
1. On the Command line, type:

Command ===> BROWSE member

Here, member represents the name of a member of the partitioned data set you
are editing. The member operand is optional.

2. Press Enter. If you specified a member name, the current library concatenation
sequence finds the member. The member displays for browsing. If you do not
specify a member name, the Browse Command Entry panel, which is similar to
the regular Browse Entry panel, appears. You can enter the name of any
sequential or partitioned data set to which you have access. When you press
Enter, the data set or member displays for browsing. The editor suspends your
initial edit session until the browse session is complete.

3. To exit from the browse session, enter the END command. The current session
resumes.

Example
To browse member YYY of the current library concatenation:
1. On the command line, type:

Command ===> BROWSE YYY

2. Press Enter.

CANCEL—Cancel Edit Changes
The CANCEL primary command ends your edit session without saving any of the
changes you have made.

Syntax
CANCEL

BUILTIN

216 z/OS V1R2.0 ISPF Edit and Edit Macros

Description
CANCEL is especially useful if you have changed the wrong data, or if the
changes themselves are incorrect. To cancel changes to a data set:
1. On the Command line, type:

Command ===> CANCEL

2. Press Enter. The edit session ends without saving your changes.

Note: If you issue SAVE and later issue CANCEL, the changes you made before
issuing SAVE are not canceled.

See the DATA_CHANGED, AUTOSAVE, and END commands for more
information about saving data.

CANCEL does not cause automatic recording in the ISPF list data set, regardless of
the setting of the autolist mode.

Example
After editing the data, you decide that you want the data set the way it was before
editing. Enter the following:
Command ===> CANCEL

The edit session ends with the data set in its original state.

CAPS—Control Automatic Character Conversion
The CAPS primary command sets the caps mode, which controls whether
alphabetic data that you type at the terminal is automatically converted to
uppercase during the edit session.

Syntax
CAPS [ON]

[OFF]

ON Turns caps mode on.

OFF Turns caps mode off.

Description
The editor sets the caps mode according to the data in the file retrieved for editing.
If caps mode has been on and the data contains lowercase letters, the mode
switches and the editor displays a message indicating the change. Likewise, if caps
mode is off and the editor contains all uppercase letters, the mode switches and
the editor displays a message.

Caps mode is saved in the edit profile. To override the automatic setting of caps
mode, you can include the CAPS command in an initial macro.

Caps mode is usually on during program development work. When caps mode is
on, any alphabetic data that you type, plus any other alphabetic data that already
exists on that line, is converted to uppercase when you press Enter or a function
key.

To set caps mode on:
1. On the Command line, type:

CANCEL

Chapter 10. Edit Primary Commands 217

Command ===> CAPS

2. Press Enter. Caps mode is set to on in the edit profile.

Caps mode is usually off when you edit text documentation. When caps mode is
set to off, any alphabetic data that you type remains just as you typed it. If you
typed it in uppercase, it stays in uppercase; if you typed it in lowercase, it stays in
lowercase. Alphabetic data already typed on a line is not affected. To set caps
mode off:
1. On the Command line, type:

Command ===> CAPS OFF

2. Press Enter. Caps mode is set to off in the edit profile.

The CAPS command does not apply to DBCS fields in formatted data or to DBCS
fields in mixed fields. If you specify CAPS, the DBCS fields remain unchanged.

See the LC (lowercase) and UC (uppercase) line commands and the CAPS macro
command for more information about changing case.

Example
This example shows a practical application of CAPS command usage.
1. You are editing a data set that contains all uppercase letters, with caps mode

off. The data you are typing contains both uppercase and lowercase letters, but
you want all of the letters to be uppercase. On the Command line, type:
COMMAND ===> CAPS

2. Press Enter.
3. Move the cursor back to the line on which you were typing.
4. Finish typing the line or type over one or more of the existing letters.
5. Press Enter. All of the letters on the line are converted to uppercase.

CHANGE—Change a Data String
The CHANGE primary command changes one search string into another.

Syntax
CHANGE string-1 string-2 [range] [NEXT] [CHARS] [X] [col-1 [col-2]]

[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

string-1
The search string you want to change.

string-2
The string you want to replace string-1.

range Two labels that identify the range of lines the CHANGE command is to
search.

NEXT Starts at the first position after the current cursor location and searches
ahead to find the next occurrence of string-1. NEXT is the default.

ALL Starts at the top of the data and searches ahead to find all occurrences of
string-1.

FIRST Starts at the top of the data and searches ahead to find the first occurrence
of string-1.

CAPS

218 z/OS V1R2.0 ISPF Edit and Edit Macros

LAST Starts at the bottom of the data and searches backward to find the last
occurrence of string-1.

PREV Starts at the current cursor location and searches backward to find the
previous occurrence of string-1.

CHARS
Locates string-1 anywhere the characters match. CHARS is the default.

PREFIX
Locates string-1 at the beginning of a word.

SUFFIX
Locates string-1 at the end of a word.

WORD
Locates string-1 when it is delimited on both sides by blanks or other
non-alphanumeric characters.

X Scans only lines that are excluded from the display.

NX Scans only lines that are not excluded from the display.

col-1 and col-2
Numbers that identify the columns the CHANGE command is to search.

Description
You can use the CHANGE command with the FIND and EXCLUDE commands to
find a search string, change it, and then exclude the line that contains the string
from the panel.

To change the next occurrence of ME to YOU without specifying any other
qualifications:
1. On the Command line, type:

Command ===> CHANGE ME YOU

2. Press Enter. This command changes only the next occurrence of the letters ME to
YOU. Since no other qualifications were specified, the letters ME can be:
v Uppercase or a mixture of uppercase and lowercase
v At the beginning of a word (prefix), the end of a word (suffix), or the entire

word (word)
v In an excluded line or a nonexcluded line
v Anywhere within the current boundaries.

To change the next occurrence of ME to YOU, but only if the letters are uppercase:
1. On the Command line, type:

Command ===> CHANGE C'ME' YOU

2. Press Enter. This type of change is called a character string change (note the C
that precedes the search string) because it changes the next occurrence of the
letters ME to YOU only if the letters are found in uppercase. However, since no
other qualifications were specified, the change occurs no matter where the
letters are found, as outlined in the preceding list.

For more information, including other types of search strings, see “Finding,
Seeking, Changing, and Excluding Data” on page 51.

CHANGE

Chapter 10. Edit Primary Commands 219

Examples
The following example changes the first plus in the data set to a minus. However,
the plus must occur on or between lines labeled .E and .S and it must be the first
character of a word:
CHANGE '+' '-' .E .S FIRST PREFIX

The following example changes the last plus in the data set to a minus. However,
the plus must occur on or between lines labeled .E and .S; it must be the last
character of a word; and it must be found on an excluded line:
CHANGE '+' '-' .E .S LAST SUFFIX X

The following example changes the plus that immediately precedes the cursor
position to a minus. However, the cursor must not be positioned ahead of the lines
labeled .E and .S. Also, the plus must occur on or between the labeled lines; it
must be a stand alone character (not part of any other word); it must be on a
nonexcluded line; and it must exist within columns 1 and 5:
CHANGE '+' '-' .E .S PREV WORD NX 1 5

COMPARE—Edit Compare
The COMPARE command compares the file you are editing with an external
sequential data set or member of a partitioned data set. Lines that exist only in the
file being edited are marked, and lines that exist only in the file being compared
are inserted as information lines in the file being edited. The command operates as
a primary command or an edit macro command.

You can use the Delete and Make Data line commands to merge changes between
files that are being compared.

The COMPARE function supports all line lengths, but some SuperC options are
ignored for line lengths greater than 256 characters long.

When you are editing a cataloged data set, explicit data set names refer to
cataloged data sets. However, if you are editing an uncataloged data set and
specify only a member name, COMPARE searches for the member in the current
uncataloged data set. For example, if you are editing an uncataloged data set called
″userid.TEMP″, then the command
COMPARE TEMP

first looks for member TEMP in the current, uncataloged data set, then looks for a
cataloged data set named TEMP (TSO prefix rules apply). If it finds data set TEMP,
and the data set being edited is a PDS member, then the same named member is
searched for in data set TEMP.

Use of COMPARE when editing concatenations that contain uncataloged data sets
is not supported and can lead to unpredictable results.

If you have made changes to the data before issuing the COMPARE command, the
COMPARE command uses the current contents of the edit session during the
comparison. Because COMPARE does not require the data to be saved on disk, you
can use the COMPARE command from EDIF, VIIF, or EDIREC sessions. However,
COMPARE NEXT and COMPARE SESSION are not supported in EDIF, VIIF, or
EDIREC sessions.

CHANGE

220 z/OS V1R2.0 ISPF Edit and Edit Macros

|
|
|
|
|

|

|
|
|
|

Command Syntax

no operand
The Edit Compare Settings panel is displayed. This panel enables you to
customize the comparison by selecting the relevant SuperC options to use.
The comparison is always a LINE compare with the options UPDLDEL,
NOLISTL, LINECMP, and CKPACKL specified.

The SEQ, NOSEQ, or COBOL keywords are automatically specified
depending on the NUMBER state in the edit profile. Mixed data can be
enabled, and is always assumed to be specified when you are in an edit
session with MIXED specified in the profile. Each field in the Edit
Compare Settings panel has field level help.

Note: When don’t process (DP) options are used, the resulting display
shows DP lines in the current file as unlabeled and does not show
DP lines from the comparison file. This can be misleading. Because
comparisons which ignore parts of the file might show data in one
file and not in the other, use caution when using DP options. When
you use options that ignore programming language comments, the
don’t process reformatted lines option is recommended.

dsname
The name of a member or data set to which the current file is compared.
This variable can be specified as a fully qualified data set name (in
quotation marks), a partially qualified data set name, or a member name.

If you specify only a member name, it can be preceded by a left
parenthesis symbol. The right parenthesis is allowed but not required. The
current edit session must be of a member of a partitioned data set. The
current edit concatenation is searched for the member to compare.

If you specify only a data set name and the current file is a member of a
PDS, then the specified data set is searched for a member of the same
name as the member being edited.

NEXT Specifies to do a comparison between the currently edited member and the
next member of the same name found at a higher level of the hierarchy (or
next level of the edit concatenation) than the current member. For example,
if the current member is found in the third level of the concatenation, and
a like-named member exists at the fourth level, then the third and fourth
level members are compared. After data is saved in the lowest level,
compares are done from that level upward. If you specify dsname, the
NEXT keyword cannot be used.

SESSION|*
Specifies that you want to compare the changes you have made during the
edit session with the copy of the data saved on disk. Use COMPARE
SESSION or COMPARE * to see the changes you have made to the edit
data since the beginning of the edit session or since the last SAVE
command.

EXCLUDE
Specifies that all matching lines in the compared data sets are excluded
from the display except for a specified number of lines above and below
the differences. The differences themselves are also shown in the display.
The specified number of lines that are shown is set on the Edit Compare

COMPARE {dsname|NEXT|SESSION|*} [{EXCLUDE} {SAVE}{SYSIN}]

COMPARE

Chapter 10. Edit Primary Commands 221

Settings panel. If you do not respecify the number for this edit session,
then whatever was the last number set is still valid. To change this
number, issue the COMPARE command with no operand and change the
EXCLUDE field on the Edit Compare Settings panel. Valid numbers are 0
through 12, inclusive.

You can also use the COMPARE EXCLUDE command at any time to
exclude all lines in a file except lines with line labels and information lines,
and the lines above and below those lines. When you specify EXCLUDE
without a data set name or NEXT, no comparison is done. Instead the
labels and information lines that already exist in the file are used to
exclude functions.

SAVE Specifies that SuperC (which performs the actual compare function) create
a listing. The listing is saved in a data set named
prefix.ISPFEDIT.COMPARE.LIST. The save function is intended for
debugging purposes, but it also provides a way to create a SuperC listing.
The listing produced is a Change listing (option CHNGL). No notification
is given regarding successful creation of the listing, and errors allocating
the listing do not cause the comparison to end.

Note: Because of the way the SuperC comparison is done, the file
currently being edited is shown in the SuperC listing as the old file,
and the file to which the current file is being compared is listed as
the new file. Therefore, insertions refer to lines that are not in the
current file, and deletions refer to lines that are only in the current
file.

SYSIN
Specifies not to free the DD name SYSIN before calling SuperC to compare
files. This enables you to pass SuperC Process Statements to alter the
comparison. No validation is done on the type of SYSIN allocation or the
contents of the data set.

Examples
To display the Edit Compare Settings panel
COMPARE

COMPARE

222 z/OS V1R2.0 ISPF Edit and Edit Macros

To compare the data to a member in the current data set or concatenation
COMPARE (member

COPY—Copy Data
The COPY primary command copies a sequential data set or a member of a
partitioned data set into the data being edited.

Syntax
COPY [member|data set name][AFTER label][linenum range]

[(member)][BEFORE label]
[data set name]

member
A member of the ISPF library or partitioned data set that you are editing.
If a name of eight or fewer characters is specified and it could be a
member name or a data set name, COPY searches for a member name first.
If no member is found, then the name is used as a data set name.

data set name
A partially qualified or fully qualified data set name. If the data set is
partitioned you can include a member name in parentheses or select a
member from a member list.

AFTER label
The destination for the data being copied. AFTER label copies the data
after the specified label.

BEFORE label
The destination for the data that is being copied. BEFORE label copies the
data before the specified label.

linenum range
Two numbers that specify the relative line numbers of the member or data

Figure 119. Edit Compare Settings Panel

COMPARE

Chapter 10. Edit Primary Commands 223

set to be copied. To specify standard, ISPF, or Cobol line numbers omit the
member name or data set name to use the Extended Edit Copy panel.

The label can be either a label that you define or one of the PDF editor-defined
labels, such as .ZF and .ZL.

If you have not defined a label and the ISPF editor-defined labels are not
appropriate for your purpose, use the A (after) or B (before) line command to
specify where the data is to be copied.

If the data set or member that you are editing is empty, you do not need to specify
a destination for the data being copied.

Note: If the member name or data set name is less than 8 characters and the data
set you are editing is partitioned a like-named member is copied. If a
like-named member does not exist the name is considered to be a partially
qualified data set name.

Description
COPY adds a copy of data that already exists to the data set or member that you
are editing. Use MOVE if you want to move data from one data set or member to
another, rather than just copy it.

To copy data into an empty data set or member:
1. On the Command line, type:

Command ===> COPY member

The member or data set name operand is optional. If you do not specify the
name of a member or of a data set to be copied, the Edit Copy panel appears.
Enter the data set or member name on this panel.

Also, if you are copying a member of a partitioned data set, you can specify the
numbers of the first and last lines to be copied, along with the kind of line
numbers (standard, ISPFSTD, COBOL, or relative) on the Edit Copy panel. This
allows you to copy only part of the data set or member.

Note: When you select ISPFSTD line numbers and the STATS mode is ON, the
editor uses the first 6 digits and ignores the 2 digit modification number.
When the STATS mode is OFF, the editor uses all 8 digits.

2. Press Enter. The data is copied.

To copy data into a data set or member that is not empty:
1. On the Command line, type:

Command ===> COPY member AFTER | BEFORE label linenum range
COPY data set name

The member or data set name operand is optional. You should omit the
member name only if you do not know the member name, or if you are going
to copy a sequential data set or a member of a different partitioned data set.

The AFTER label and BEFORE label operands are also optional. However, if the
data set or member that is to receive the copied data is not empty, you must
specify a destination for the copied data. Therefore, if you do not want to use a
label, you can substitute either the A (after) or B (before) line command as the
destination of the copied data. However, a number indicating that the A or B

COPY

224 z/OS V1R2.0 ISPF Edit and Edit Macros

command should be repeated cannot follow the line command. See the
descriptions of these commands for information about them.

If the data set or member is not empty and you do not specify a destination, a
MOVE/COPY Pending message appears in the upper-right corner of the panel and
the data is not copied. When you type a destination and press Enter, the data is
copied.

2. Press Enter. If you entered a member name or data set name, the member or
data set is copied. Otherwise, the Edit Copy panel appears. If a range of line
numbers is specified, only those lines are copied. See the previous example for
more information.

See “Copying and Moving Data” on page 48 if you need more information.

Example
The following steps show how you can copy data when you omit the member
name and the ISPF editor panels appear.
1. Type COPY on the Command line and specify the destination of the operation.

The panel in Figure 120 shows you that the data is to be copied after line
000700, as specified by the A (after) line command.

2. When you press Enter, the Edit Copy panel appears. Specify the data you want
copied.
The example in Figure 121 copies the data set member named COPYFROM.
Since you are using the Edit Copy panel, you can also specify the number of
lines you want copied.

Figure 120. Member Before Data is Copied

COPY

Chapter 10. Edit Primary Commands 225

3. The panel in Figure 122 shows the contents of the COPYFROM member, which
is copied into the original data set. This panel is shown only for this example,
so you can see the data that is being copied. It does not appear during a copy
sequence.

4. When you press Enter, the editor copies the data and displays a short message
in the upper right-hand side of the panel. Figure 123 shows the result of the
copy operation.

Menu RefList Utilities Help
--

Edit/View - Copy
More: -

Project . . . PROJ1
Group USERID . . . ________ . . . ________ . . . ________
Type CLIST
Member . . . (Blank or pattern for member selection list)

From Other Partitioned or Sequential Data Set:
Data Set Name . . ___
Volume Serial . . ______ (If not cataloged)

Data Set Password . . (If password protected)

Line Numbers (Blank for entire member or seq. data set)
First line ________
Last line ________
Number type ________ (Standard, ISPFstd, COBOL, or Relative)

Press Enter key to copy, enter End command to cancel copy.
Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 121. Edit Copy Panel (ISRECPY1)

Figure 122. Data Set to be Copied

COPY

226 z/OS V1R2.0 ISPF Edit and Edit Macros

CREATE—Create Data
The CREATE primary command creates a member of a partitioned data set, or a
sequential data set, from the data you are editing.

Syntax
CREATE [member] [range]

(member) [range]
[data_set(member)] [range]
[data_set] [range]

member
The name of the new member added to the partitioned data set currently
being edited. If you are using a concatenated sequence of libraries, the
member is always written to the first library in the sequence.

range Two labels that specify the group of lines, from beginning to end, which
are added to the new member.

data_set(member)
The name of a different partitioned data set and new member name to be
added to the partitioned data set. The data set name can be fully qualified
or partially qualified.

data_set
The name of a different sequential data set to be added. The data set name
can be fully qualified or partially qualified.

Description
CREATE adds a new member to a partitioned data set only if a member of the
same name does not already exist. Use REPLACE if the member already exists.

To create a member of a partitioned data set or a sequential data set:

Figure 123. Member After Data Has Been Copied

CREATE

Chapter 10. Edit Primary Commands 227

1. On the Command line, type:
Command ===> CREATE member range
Command ===> CREATE (member) range
Command ===> CREATE data_set(member) range
Command ===> CREATE data_set range

The member operand is optional unless you specify a data set name. It
represents the name of the member you want to create.

The range operand is also optional. It represents a pair of labels that specify the
first and last lines in a group of lines used to create the new member or
sequential data set.

If you omit the range operand, you must specify the lines by using either the C
(copy) or M (move) line command. See the descriptions of these commands if
you need more information about them.

If you omit the range operand and do not enter one of the preceding line
commands, a CREATE Pending message is displayed in the upper-right corner of
the panel.

2. Press Enter. If you did not specify the name of the member or the name of
another partitioned data set along with the member name to be created, the
Edit Create panel appears. Enter the member name on this panel and press
Enter again. If you used either a pair of labels or a C line command, the data is
copied from the member that you are editing into the member that you are
creating. If you used the M line command, however, the data is removed from
the member that you are editing and placed in the member that you are
creating.
If the data set specified does not exist, ISPF prompts you to see if the data set
should be created. You can create the data set using the characteristics of the
source data set as a model, or specify the characteristics for the new data set.
You can suppress this function through the ISPF configuration table, causing
any CREATE request for a non-existent data set to fail.

Refer to “Creating and Replacing Data” on page 47 if you need more information
about the CREATE command.

Example
The following steps show how you can create a new member when you omit the
member name.
1. Type CREATE on the Command line and specify which lines you want to copy or

move into the new data set or member. The example in Figure 124 uses the
MM (block move) line command to move a block of lines from the data.

CREATE

228 z/OS V1R2.0 ISPF Edit and Edit Macros

2. When you press Enter, the Edit Create panel (Figure 125) appears. Type the
name of a new member and press Enter. If you type the name of a member
that already exists, an error message appears and the CREATE fails. The name
of the member created for this example is NEWMEM.

3. Figure 126 shows the lines remaining in the original member after the specified
lines were moved to the new member.

Figure 124. Member Before New Member Is Created

Menu RefList Utilities Help
--

Edit - Create
More: +

"Current" Data Set: USERID.PRIVATE.CLIST(SCREEN)

To ISPF Library:
Project . . . USERID
Group PRIVATE
Type CLIST
Member . . . NEWMEM__

To Other Partitioned Data Set Member:
Data Set Name . . ___
Volume Serial . . ______ (If not cataloged)

Data Set Password . . (If password protected)

Enter "/" to select option
_ Specify pack option for "CREATE" Data Set

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 125. Edit Create Panel (ISRECRA1)

CREATE

Chapter 10. Edit Primary Commands 229

4. Figure 127 shows the contents of the new member. Notice that the data is
renumbered if both number mode and autonum mode are on. A source listing
of the data is also recorded in the ISPF list data set for eventual printing if
autolist mode is on.

Figure 126. Member After New Member Has Been Created

Figure 127. New Member Created

CREATE

230 z/OS V1R2.0 ISPF Edit and Edit Macros

CUT—Cut and Save Lines
The CUT primary command saves lines to one of eleven named clipboards for
later retrieval by the PASTE command. The lines can be appended to lines already
saved by a previous CUT command or can replace existing lines in a clipboard.

Syntax
CUT [lptr-range] [DEFAULT | clipboardname]

[REPLACE|APPEND][DISPLAY]

lptr-range Two line pointers that specify the range of lines in
the current member that are to be added to or
replace data in the clipboard. A line pointer can be
a label. You must specify both a starting and
ending line pointer. If you do not specify a range
of lines, all lines in the edit session are copied to
the clipboard.

clipboardname The name of the clipboard to use. If you omit this
parameter, the ISPF default clipboard (named
DEFAULT) is used. You can define up to ten
additional clipboards. The size of the clipboards
and number of clipboards might be limited by
installation defaults.

REPLACE|APPEND

Specify REPLACE to replace existing data in the
clipboard.

Specify APPEND to add the data to the clipboard.
You can select REPLACE or APPEND as the
default by entering the EDITSET command on the
editor command line. The default action depends
on the setting specified in the panel displayed by
the EDITSET. You should always specify APPEND
or REPLACE in a macro because the user can
change the default behavior.

DISPLAY Show a list of existing clipboards. From this list
you can browse, edit, clear, or rename the
clipboards.

Description
CUT saves copies of lines from an edit session to a clipboard for later retrieval by
the PASTE command. The lines are moved or copied from the session to the
named clipboard. Lines are specified by either the C (Copy) or M (Move) line
commands, CC or MM block line commands, or label names. If the C or CC line
commands or labels are used to identify the lines, the lines are copied to the
clipboard. If the M or MM line commands are used to identify the lines, the lines
are copied to the clipboard and deleted from the edit session (in effect, moving
them).

All lines in the edit session are copied to the clipboard if you do not specify the
lines using a label range on the CUT command, or through the C or M commands.

CUT

Chapter 10. Edit Primary Commands 231

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

If you specify a clipboard name, lines are copied to that clipboard. If the specified
clipboard does not yet exist, it is created. ISPF provides a default clipboard named
DEFAULT. You can use up to 10 other clipboards that you define. The defined
clipboards exist as long as you are logged on to TSO and are deleted when you log
off.

You can view the contents of clipboards and rename existing clipboards using the
DISPLAY keyword of the CUT command.

Example
To save all the lines in the current file to the default clipboard, appending them to
lines already in the clipboard:
ISREDIT CUT .ZFIRST .ZLAST APPEND

(This may be abbreviated as ISREDIT CUT).

This example assumes that you have APPEND set as the default behavior in the
EDITSET command panel.

To save all the lines in the current file to a clipboard named USERC1, replacing
any lines already in the clipboard:
CUT .ZFIRST .ZLAST USERC1 REPLACE

DEFINE—Define a Name
The DEFINE primary command is used to:
v Identify a macro that replaces a built-in command of the same name
v Identify programs that are edit macros
v Assign an alias to a macro or built-in command
v Make a macro or built-in command inoperable
v Reset an inoperable macro or built-in command
v Disable a macro or built-in command.

DEFINE is often used with the BUILTIN command.

Syntax
DEFINE name {MACRO CMD }

{MACRO PGM }
{ALIAS name-2}
{NOP }
{RESET }
{DISABLED }

name The name for the command.

MACRO CMD
Identifies the name you are defining as a command language (CLIST or
REXX EXEC) macro, which is called in the same way as using the SELECT
service CMD keyword with a percent symbol (%) preceding the command.
That means that you can specify only CLISTs or REXX EXECs. This
operand is the default.

MACRO PGM
Identifies the name that you are defining as a program (load module)
macro.

CUT

232 z/OS V1R2.0 ISPF Edit and Edit Macros

|

|
|

ALIAS name-2
Identifies the name you are defining as an alias of another name, with the
same characteristics. If name-2 is already an alias, the editor replaces it
with the command for which it is an alias. Therefore, it is not possible to
have an alias of an alias.

NOP Makes the name that you are defining and all of its aliases inoperable until
you reset them with RESET. Therefore, when the name or an alias of the
name is called, nothing is processed. NOP is similar to DISABLED, except
that disabled names cannot be reset by the RESET operand.

RESET
Resets the most recent definition of the name that you are defining to the
status in effect before that definition. For example, RESET makes
inoperable names operable again.

DISABLED
Disables the name you are defining and all of its aliases until you
completely exit the editor and return to the ISPF Primary Option Menu.
Therefore, when the name or an alias of the name is entered, nothing is
processed. A disabled command or macro cannot be restored by the RESET
operand. To disable RESET, use delimiters around 'RESET' to distinguish it
from the keyword.

Description
The effects of a DEFINE command remain until you either issue DEFINE RESET or
exit from the editor. You enter the editor when you select option 2, and you do not
exit the editor until you return to the ISPF Primary Option Menu. Therefore, if you
edit several members of a partitioned data set, one DEFINE at the beginning
affects them all.

To temporarily override DEFINE, BUILTIN.

Stacking DEFINE Commands
Except for the DISABLED operand, the DEFINE operations are stacked. The RESET
operand unstacks them. For example:
DEFINE A alias FIND
DEFINE A alias COPY
DEFINE A alias SAVE

stacks three definitions of A. Only the last one is effective. Here, A would be
defined as SAVE.

The following operation:
DEFINE A RESET

removes one command from the stack, making the previous command effective. In
the preceding example, A would now be defined as COPY.

Examples
To define the name IJKDOIT as a CLIST or REXX macro, enter:
Command ===> DEFINE IJKDOIT MACRO

To define the name SETITUP as a program macro, enter:
Command ===> DEFINE SETITUP MACRO PGM

DEFINE

Chapter 10. Edit Primary Commands 233

To define the name DOIT as an alias of the macro IJKDOIT, enter:
Command ===> DEFINE DOIT ALIAS IJKDOIT

To define the name SAVE to have no effect, enter:
Command ===> DEFINE SAVE NOP

To reset the definition of the name SAVE, enter:
Command ===> DEFINE SAVE RESET

To define the name FINDIT as disabled, enter:
Command ===> DEFINE FINDIT DISABLED

DELETE—Delete Lines
The DELETE primary command deletes lines from the data you are editing.

Syntax
DELETE {ALL X | NX }

{range X | NX}
{ALL range }

ALL Specifies that all selected lines are deleted. The DELETE command, unlike
FIND, CHANGE, and EXCLUDE, does not accept NEXT, FIRST, PREV, or
LAST. ALL is required to emphasize that NEXT is not the default.

X | NX
Restricts the lines deleted to those that are excluded or not excluded,
respectively.

range Two labels that limit the lines deleted to a range within and including
those labels. The defaults are the editor-defined .ZFIRST and .ZLAST
labels.

Description
There is no DELETE ALL command, as a precaution against error. To delete all
lines, do one of the following:
v To delete all lines by using the editor-defined labels:

Command ===> DELETE ALL .ZFIRST .ZLAST

v To delete all lines by first resetting any excluded lines to make them not
excluded, and then deleting all lines that are not excluded:
Command ===> RESET; DELETE ALL NX

Here are other uses of the DELETE command:
v To delete all excluded lines:

Command ===> DELETE ALL X

v To delete all not excluded lines:
Command ===> DELETE ALL NX

v To delete all excluded lines within a range:
Command ===> DELETE .label1 .label2 X

Here, and in the commands that follow, .label1 and .label2 represent the two
labels that show the range of lines to be deleted.

v To delete all not excluded lines within a range:
Command ===> DELETE .label1 .label2 NX

DEFINE

234 z/OS V1R2.0 ISPF Edit and Edit Macros

v To delete all lines within a range:
Command ===> DELETE .label1 .label2

Examples
You can more easily determine which lines to delete in a large data set by
excluding lines that meet some criterion, or by leaving all lines that meet the
criterion nonexcluded. Then, with DELETE you can delete many lines. For
example, to delete all blank lines in a data set, type the following commands on
the Command line and press Enter after each one:
1. First, reset all excluded lines:

RESET X

2. Then, exclude lines containing characters that are not blanks:
EXCLUDE ALL P'¬'

3. Finally, delete the nonexcluded lines, which contain only blanks:
DEL ALL NX

Another way to do the same thing is this:
1. First, exclude all lines:

EXCLUDE ALL

2. Then, find all lines containing a character that is not a blank:
FIND ALL P'¬'

3. Finally, delete the remaining excluded lines, which contain only blanks:
DEL ALL X

EDIT—Edit from within an Edit Session
The EDIT primary command allows you to edit another sequential data set or
partitioned data set member during your current edit session.

Syntax
EDIT [member]

member
A member of the ISPF library or other partitioned data set you are
currently editing. You may enter a member pattern to generate a member
list.

Description
Editing one data set or member while you are already editing another is called
recursive editing. To edit another data set or member during your current edit
session:
1. On the Command line, type:

Command ===> EDIT member

Here, member represents the name of a member of the partitioned data set you
are editing. The member operand is optional.

2. Press Enter.
If you specified a member name, the current library concatenation sequence
finds the member. The member is displayed for editing.
If you do not specify a member name, the Edit Command Entry panel, which is
identical to the regular Edit Entry panel, appears. You can enter the name of

DELETE

Chapter 10. Edit Primary Commands 235

any sequential or partitioned data set to which you have access. When you
press Enter, the data set or member is displayed for editing.
The editor suspends your initial edit session until the second-level edit session
is complete. Editing sessions can be nested until you run out of storage.

3. To exit from a nested edit session, enter an END or CANCEL command. The
current edit session resumes.

Example
The following steps show the use of the EDIT primary command:
1. Assume that you are editing a member named PGM8 and you need to edit a

member in another data set. So, you enter the EDIT command on the
Command line, omitting the member operand, as shown in Figure 128.

2. When you press Enter, the Edit Command Entry panel (Figure 129) appears.
On this panel, you enter the name of the partitioned data set and member that
you want to edit:

Figure 128. EDIT Primary Command Example

EDIT

236 z/OS V1R2.0 ISPF Edit and Edit Macros

3. When you press Enter again, the member is displayed for editing, as shown in
Figure 130:

EDITSET—Display the Editor Settings Dialog
The EDITSET and EDSET primary commands cause the Editor Settings dialog to
begin, enabling you to modify Editor settings.

Figure 129. Edit Command Entry Panel (ISREDM03)

Figure 130. Nested Member Editing Example

EDIT

Chapter 10. Edit Primary Commands 237

Syntax
EDITSET
EDSET

Description
The EDITSET primary command, and its alias EDSET, enable you to modify the
Editor settings.

The Edit and View Settings Panel
Entering the EDITSET or EDSET primary commands, or choosing the Edit_Settings
action bar item causes the following panel to display:

The fields on the panel are as follows:

User session initial macro
You can specify a macro to be run before you begin editing your sequential
data set or any member of a partitioned data set. This initial macro allows
you to set up a particular editing environment for the Edit session you are
beginning. This initial macro runs in addition to any IMACRO value in
your profile.

Maximum initial storage allowed for Edit and View

The maximum amount of storage that edit and view use when initially
loading the data into the edit or view session. This number is in kilobytes
and is rounded to the nearest 128 KB value. If you set a limit on the initial
amount of storage allowed, and a session requires more than that amount,
the data is shown in BROWSE mode instead of edit or view.

A value of zero indicates that the edit session should not impose any limits
on initial storage used. If this value is zero and there is not enough storage
to load the data, a program error can result.

Figure 131. Edit and View Settings Panel (ISREDSET)

EDITSET

238 z/OS V1R2.0 ISPF Edit and Edit Macros

Target line for found/changed/excluded string
This indicates the line of the edit data display to which the target line of a
FIND, CHANGE, or EXCLUDE command should be positioned. The value
can be from 1 to 99, the default is 2. If the value specified is greater than
the last line of the display, the target line is positioned to the last line of
the display.

Always position found/changed/excluded string to target line
This determines whether the editor always positions the target line of a
FIND, CHANGE, or EXCLUDE command to the target line specified in the
Target line for found/changed/excluded string field, or only position the
string if it is not currently on the display. The default is to only position
the line if it is not on the current display.

Remove action bars in ISPF edit and view panels
If this field is checked, the action bars in the edit or view panels are not
shown. This field effects only those panels that are shipped by ISPF, and
has no effect on customized edit panels or edit panels shipped by products
other than ISPF.

CUT default

Append
If data exists on the clipboard, append the new data being cut to
the end of the existing data.

Replace
If data exists on the clipboard, replace it with the new data being
cut.

PASTE default

Delete Remove the data from the clipboard after it has been pasted.

Keep Do not remove the data from the clipboard after it has been pasted.
This allows for data to be pasted multiple times.

Confirm Cancel/Move/Replace
When you select this field with a ″/″, a confirmation panel displays when
you request one of these actions, and the execution of that action would
result in data changes being lost or existing data being overwritten.
v For MOVE, the confirm panel is displayed if the data to be moved

exists. Otherwise, an error message is displayed.
v For REPLACE, the confirm panel is displayed if the data to be replaced

exists. Otherwise, the REPLACE command functions like the edit
CREATE command, and no confirmation panel is displayed.

v For CANCEL, the confirmation panel is displayed if any data changes
have been made, whether through primary commands, line commands,
or typing.

Note: Any commands or data changes pending at the time the CANCEL
command is issued are ignored. Data changes are ″pending″ if
changes have been made to the displayed edit data, but no
interaction with the host (ENTER, PF key, or command other than
CANCEL) has occurred. If no other changes have been made
during the edit session up to that point, the confirmation panel is
not displayed.

Apply Settings Immediately

EDITSET

Chapter 10. Edit Primary Commands 239

Controls whether a change in the setting applies to the current edit session
(immediately) or on the next edit session.

Preserve VB record length
You can select this option to cause the editor to store the original length of
each record in variable length data sets and when a record is saved, the
original record length is used as the minimum length for the record.

Apply Settings Immediately

Controls whether a change in the setting applies to the current edit session
(immediately) or on the next edit session.

Example
The following steps show the use of the EDIT primary command:
1. Assume that you are editing a member named PGM8 and you want to change

the setting for Confirming a Cancel, Move, or Replace action. So, you enter the
EDITSET command on the Command line as shown in Figure 132.

2. When you press Enter, the Edit and View Settings panel (Figure 133) appears.
On this panel, you enter the name of the partitioned data set and member that
you want to edit:

Figure 132. EDITSET Primary Command Example

EDITSET

240 z/OS V1R2.0 ISPF Edit and Edit Macros

3. Enter or remove the slash mark in the Confirm Cancel/Move/Replace field to
make the setting as you want it to be.

END—End the Edit Session
The END primary command ends the editing of the current sequential data set or
partitioned data set member.

Syntax
END

Description
To end an edit session by using END, do one of the following:
v Enter END on the Command line, or
v Press a function key to which END is assigned. The default setting is F3.

If no aliases have been defined for END, the editor’s response to END depends on:
v Whether changes were made to the data during your current edit session
v If changes were made, whether SAVE was entered after the last change
v The setting of number mode, autonum mode, stats mode, autolist mode, and

autosave mode in the edit profile
v Whether you were editing a member that was an alias of another member.

For additional explanation, see “Ending an Edit Session” on page 14.

Example
To end the current edit session:
1. On the Command line, type:

Command ===> END

Figure 133. Edit and View Settings Panel (ISREDSET)

EDITSET

Chapter 10. Edit Primary Commands 241

2. Press Enter.

EXCLUDE—Exclude Lines from the Display
The EXCLUDE primary command hides lines that contain a search string from
view and replaces them with a dashed line. To see the lines again, you enter either
the FLIP, RESET or RESET EXCLUDED command.

Syntax
EXCLUDE string [range] [NEXT] [CHARS] [col-1 [col-2]]

[ALL] [PREFIX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

string The search string you want to exclude.

range Two labels that identify the lines which the EXCLUDE command is to
search.

NEXT Starts at the first position after the current cursor location and searches
ahead to find the next occurrence of string. NEXT is the default.

ALL Starts at the top of the data and searches ahead to find all occurrences of
string.

FIRST Starts at the top of the data and searches ahead to find the first occurrence
of string.

LAST Starts at the bottom of the data and searches backward to find the last
occurrence of string.

PREV Starts at the current cursor location and searches backward to find the
previous occurrence of string.

CHARS
Locates string anywhere the characters match. CHARS is the default.

PREFIX
Locates string at the beginning of a word.

SUFFIX
Locates string at the end of a word.

WORD
String is delimited on both sides by blanks or other non-alphanumeric
characters.

col-1 and col-2
Numbers that identify the columns the EXCLUDE command is to search.

Description
You can use the EXCLUDE command with the FIND and CHANGE commands to
find a search string, change it, and exclude the line that contains the string from
the panel.

To exclude the next nonexcluded line that contains the letters ELSE without
specifying any other qualifications:
1. On the Command line, type:

Command ===> EXCLUDE ELSE

2. Press Enter. Since no other qualifications were specified, the letters ELSE can be:

END

242 z/OS V1R2.0 ISPF Edit and Edit Macros

v Uppercase or a mixture of uppercase and lowercase
v At the beginning of a word (prefix), the end of a word (suffix), or the entire

word (word)
v Anywhere within the current boundaries.

To exclude the next line that contains the letters ELSE, but only if the letters are
uppercase:
1. On the Command line, type:

Command ===> EXCLUDE C'ELSE'

2. Press Enter. This type of exclusion is called a character string exclusion (note
the C that precedes the search string) because it excludes the next line that
contains the letters ELSE only if the letters are found in uppercase. However,
since no other qualifications were specified, the exclusion occurs no matter
where the letters are found on a nonexcluded line, as outlined in the previous
list.

For more information, including other types of search strings, see “Finding,
Seeking, Changing, and Excluding Data” on page 51.

Examples
The following example excludes the first nonexcluded line in the data set that
contains the letters ELSE. However, the letters must occur on or between lines
labeled .E and .S and they must be the first four letters of a word:
Command ===> EXCLUDE ELSE .E .S FIRST PREFIX

The following example excludes the last nonexcluded line in the data set that
contains the letters ELSE. However, the letters must occur on or between lines
labeled .E and .S and they must be the last four letters of a word.
Command ===> EXCLUDE ELSE .E .S LAST SUFFIX

The following example excludes the first nonexcluded line that immediately
precedes the cursor position and that contains the letters ELSE. However, the cursor
must not be positioned ahead of the lines labeled .E and .S. Also, the letters must
occur on or between lines labeled .E and .S; they must be stand alone characters
(not part of any other word); and they must exist within columns 1 and 5:
Command ===> EXCLUDE ELSE .E .S PREV WORD 1 5

FIND—Find a Data String
The FIND primary command locates one or more occurrences of a search string.

Syntax
FIND string [range] [NEXT] [CHARS] [X] [col-1[col-2]]

[ALL] [PREFIX] [NX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

string The search string you want to find.

range Two labels that identify the lines which FIND is to search.

NEXT Starts at the first position after the current cursor location and searches
ahead to find the next occurrence of string. NEXT is the default.

EXCLUDE

Chapter 10. Edit Primary Commands 243

ALL Starts at the top of the data and searches ahead to find all occurrences of
string.

FIRST Starts at the top of the data and searches ahead to find the first occurrence
of string.

LAST Starts at the bottom of the data and searches backward to find the last
occurrence of string.

PREV Starts at the current cursor location and searches backward to find the
previous occurrence of string.

CHARS
Locates string anywhere the characters match. CHARS is the default.

PREFIX
Locates string at the beginning of a word.

SUFFIX
Locates string at the end of a word.

WORD
String is delimited on both sides by blanks or other non-alphanumeric
characters.

X Scans only lines that are excluded from the display.

NX Scans only lines that are not excluded from the display.

col-1 and col-2
Numbers that identify the columns the FIND command is to search.

Description
You can use the FIND command with the EXCLUDE and CHANGE commands to
find a search string, change it, and exclude the line that contains the string from
the panel.

To find the next occurrence of the letters ELSE without specifying any other
qualifications:
1. On the Command line, type:

Command ===> FIND ELSE

2. Press Enter. Since no other qualifications were specified, the letters ELSE can be:
v Uppercase or a mixture of uppercase and lowercase
v At the beginning of a word (prefix), the end of a word (suffix), or the entire

word (word)
v In either an excluded or a nonexcluded line
v Anywhere within the current boundaries.

To find the next occurrence of the letters ELSE, but only if the letters are uppercase:
1. On the Command line, type:

Command ===> FIND C'ELSE'

2. Press Enter. This type of search is called a character string search (note the C
that precedes the search string) because it finds the next occurrence of the
letters ELSE only if the letters are in uppercase. However, since no other
qualifications were specified, the letters can be found anywhere in the data set
or member, as outlined in the preceding list.

FIND

244 z/OS V1R2.0 ISPF Edit and Edit Macros

For more information, including other types of search strings, see “Finding,
Seeking, Changing, and Excluding Data” on page 51.

Examples
The following example finds the first occurrence in the data set of the letters ELSE.
However, the letters must occur on or between lines labeled .E and .S and they
must be the first four letters of a word:
Command ===> FIND ELSE .E .S FIRST PREFIX

The following example finds the last occurrence in the data set of the letters ELSE.
However, the letters must occur on or between lines labeled .E and .S; they must
be the last four letters of a word; and they must be found in an excluded line.
Command ===> FIND ELSE .E .S LAST SUFFIX X

The following example finds the first occurrence of the letters ELSE that
immediately precedes the cursor position. However, the cursor must not be
positioned ahead of the lines labeled .E and .S. The letters must occur on or
between lines labeled .E and .S; they must be stand alone characters (not part of
any other word); they must be found in a nonexcluded line; and they must exist
within columns 1 and 5:
Command ===> FIND ELSE .E .S PREV WORD NX 1 5

FLIP—Reverse Exclude Status of Lines
The FLIP primary command reverses the exclude status of a specified group of
lines or of all the lines in a file, including data, information, message, and note
lines.

Syntax
FLIP [label-range]

Description
The FLIP primary command reverses the exclude status of a range of lines you
specify with labels. It can also reverse the exclude status of all the lines in a file.
For example, if you have used the 'X ALL;FIND ALL xyz' command to find lines
containing a string (xyz), you can use FLIP to see the lines which do not contain
the string.

The range is optional. If no range is specified, the exclude status is reversed for all
of the lines in the file.

To reverse the exclude status of all the lines in a file:
1. Enter the following on the Command line:

Command ===> flip

2. Press Enter.
All the excluded lines in the file are displayed, and all the previously displayed
lines are excluded.

To reverse the exclude status of a range of lines:
1. Enter the following on the Command line:

Command ===> flip .a .b

FIND

Chapter 10. Edit Primary Commands 245

Actual values are substituted for .a and .b and can be defined by an edit macro
or by the user.

2. Press Enter.
All the lines with the specified range that were previously excluded are
displayed, and all the lines within the specified range that were displayed are
excluded.

Example
In the example shown in Figure 134, the edit session contains 10 lines:

After excluding lines 4 through 7, the data set looks like Figure 135:

Figure 134. Example of Data Set

FLIP

246 z/OS V1R2.0 ISPF Edit and Edit Macros

After executing FLIP, all previously excluded lines are shown. All previously
visible lines are excluded, as shown in Figure 136.

HEX—Display Hexadecimal Characters
The HEX primary command sets hexadecimal mode, which determines whether
data is displayed in hexadecimal format.

Figure 135. Example of Data Set with Excluded Lines

Figure 136. Example of Data Set using FLIP on Excluded Lines

FLIP

Chapter 10. Edit Primary Commands 247

Syntax
HEX [ON VERT]

[ON DATA]
[OFF]

ON VERT
Displays the hexadecimal representation of the data vertically (two rows
per byte) under each character.

ON DATA
Displays the hexadecimal representation of the data as a string of
hexadecimal characters (two per byte) under the characters.

OFF Does not display hexadecimal representation of the data.

Description
The HEX command determines whether the editor displays hexadecimal
representation in a vertical or data string format. See Figure 138 on page 249 and
Figure 139 on page 250 for examples of these two formats.

When the editor is operating in hexadecimal mode, three lines are displayed for
each source line. The first line shows the data in standard character form, while the
next two lines show the same data in hexadecimal representation.

Besides normal editing on the first of the three lines, you can change any
characters by typing over the hexadecimal representations.

You can also use the FIND, CHANGE, and EXCLUDE commands to find, change,
or exclude invalid characters or any specific hexadecimal character, regardless of
the setting of hexadecimal mode. See the discussion of picture strings and
hexadecimal strings under “Finding, Seeking, Changing, and Excluding Data” on
page 51.

Examples
Suppose you are editing the data set member shown in Figure 137:

HEX

248 z/OS V1R2.0 ISPF Edit and Edit Macros

Pressing Enter causes the hexadecimal value for each character on the panel,
including blanks, to be displayed in vertical format, as shown in Figure 138.

You can enter the HEX DATA command to change the display to data format, as
shown in Figure 139 on page 250.

Figure 137. Member With Hexadecimal Mode Off

Figure 138. Hexadecimal Display, Vertical Representation

HEX

Chapter 10. Edit Primary Commands 249

HILITE—Enhanced Edit Coloring
HILITE is used to control the use of color in the editor by changing the settings for
the enhanced color and language-sensitive editing features.

Note: Language-sensitive and enhanced coloring of the edit session is only
available when enabled by the installer or the person who maintains the
ISPF product. For information on enabling the enhanced color function, see
ISPF Planning and Customizing

HILITE with no operands presents a dialog (see “The HILITE Dialog” on page 37)
that allows you to change coloring options, and to see which keywords are
supported for each language.

Syntax
HILITE [ON] [AUTO] [RESET] [PAREN] [FIND] [CURSOR] [SEARCH] [DISABLED]

[OFF] [DEFAULT]
[LOGIC] [OTHER]
[IFLOGIC] [ASM]
[DOLOGIC] [BOOK]
[NOLOGIC] [C]

[COBOL]
[DTL]
[JCL]
[PANEL]
[PASCAL]
[PLI]
[REXX]
[SKEL]
[IDL]

ON Sets program coloring ON and turns LOGIC coloring off.

OFF Sets coloring OFF, with the exception of cursor, find, and parenthesis
highlighting.

Figure 139. Hexadecimal Display, Data Representation

HILITE

250 z/OS V1R2.0 ISPF Edit and Edit Macros

LOGIC
LOGIC highlighting matches logical language-specific keywords in the
same color. If an unmatched closing keyword is found, such as END for
PL/I or :eul. for BookMaster, it is highlighted in reverse video pink only if
HILITE LOGIC is active. When logic is being highlighted, only comments
are highlighted along with it.

Logic highlighting is available for PL/I, PL/X, Rexx, OTHER, C, SKELS,
Pascal and BookMaster only. HILITE LOGIC turns on both IFLOGIC and
DOLOGIC.

Note: LOGIC highlighting can be turned off by issuing HILITE ON,
HILITE NOLOGIC, or HILITE RESET commands. Changing the
HILITE language does not change the LOGIC setting.

IFLOGIC
Turns on IF/ELSE logic matching. IFLOGIC matches IF and ELSE
statements. When IFLOGIC is enabled, unmatched ELSE keywords are
highlighted in reverse video pink.

DOLOGIC
Turns on DO/END logic matching. DOLOGIC matches logical blocks such
as DO/END in PL/I or :ol/:eol in BookMaster. For the C language,
DOLOGIC matches curly braces ({ and }). C trigraphs for curly braces are
not recognized and are not supported by DOLOGIC highlighting. When
DOLOGIC is enabled, unmatched logical block terminators, (such as END
keywords in PL/I, :e tags in BookMaster or right braces (}) in C) are
highlighted in reverse video pink.

NOLOGIC
Same as ON.

AUTO
Allows the PDF component to determine the language.

DEFAULT
Highlights the data in a single color.

OTHER
Highlight the data as a pseudo-PL/I language. Limited CLIST support is
also provided by OTHER.

ASM Highlights the data as Assembler.

BOOK
Highlights the data as BookMaster.

C Highlights the data as C.

COBOL
Highlights the data as COBOL

DTL Highlights the data as Dialog Tag Language.

JCL Highlights the data as MVS Job Control Language.

PANEL
Highlights the data as ISPF Panel Language.

PASCAL
Highlights the data as Pascal.

PLI Highlights the data as PL/I.

HILITE

Chapter 10. Edit Primary Commands 251

REXX Highlights the data as Rexx.

SKEL Highlights the data as ISPF Skeleton Language.

IDL Highlights the data as IDL.

RESET
Resets defaults (AUTO, ON, Find and Cursor on).

PAREN
Toggles parenthesis matching. When parenthesis matching is active, only
comments are specially colored. All other code appears in the default color.
Note that extra parenthesis highlighting is always active when highlighting
is active.

FIND The HILITE FIND command toggles the highlighting color of any string
that would be found by an RFIND. The user can select the highlight color.
The default is reverse video white.

Only non-picture strings are supported, and the only additional qualifiers
recognized are hex strings (X’...’), character strings (C’...’), text strings
(T’...’), WORD, PREFIX and SUFFIX, and boundaries specified in the FIND
command. Hex strings may be highlighted. but non-displayable characters
are not highlighted. Labels are ignored when FIND strings are highlighted.

Because FIND highlighting is not quite as robust as the FIND command
itself, the editor may highlight more occurrences of the FIND string than
FIND would actually locate. The FIND operand toggles the display of
search strings. If HILITE FIND is issued when FIND highlighting is in
effect, FIND highlighting is disabled. Similarly, if FIND highlighting is
disabled, the HILITE FIND command enables it.

Note:

RESET has been enhanced, through the addition of a FIND operand, to
temporarily disable the highlighting of FIND strings until the next FIND,
RFIND, CHANGE, or RCHANGE command is issued. RESET with the
FIND operand (or no operands at all), temporarily disables the
highlighting of FIND strings.

CURSOR
The CURSOR operand toggles the highlighting of the phrase that contains
the cursor in a user selectable color. The default is white.

Cursor highlighting in Edit is performed in a manner similar to the way it
is done in Browse. The entire phrase from the previous blank to the next
blank is highlighted. The CURSOR operand toggles cursor highlighting. If
HILITE CURSOR is issued when CURSOR highlighting is in effect,
CURSOR highlighting is disabled. Similarly, if CURSOR highlighting is
disabled, the HILITE CURSOR command enables it.

SEARCH
HILITE SEARCH finds the first unmatched END, ELSE, }, or) above the
last displayed line on the screen. If a mismatched item is found, the file is
scrolled so that the mismatch is at the top of the screen. The search for
mismatches only occurs for lines above the last displayed line, so you may
need to scroll to the bottom of the file before issuing the HI SEARCH
command.

HILITE

252 z/OS V1R2.0 ISPF Edit and Edit Macros

Search is not available when the DEFAULT language operand is used.
Search for language keywords is only supported for languages which
supported by the logic option.

DISABLED
Turns off all HILITE features and removes all action bars. This benefits
performance at the expense of function. Since DISABLED status is not
stored in the edit profile, you need to reenter this operand each time you
enter the editor. When DISABLED is in effect, keylists are unavailable for
that edit session.

Description
The HILITE primary command can be used to highlight, in user-specified colors,
numerous language-specific constructs, program logic features, the phrase
containing the cursor, and any strings that match the previous FIND operation or
those that would be found by an RFIND or RCHANGE request. In addition, when
HILITE is entered with no operands, a dialog appears that allows you to set
default colors for the data area in non-program files, for any characters typed since
the previous Enter or PF key entry, and for strings located by FIND.

Both HI and HILIGHT are valid synonyms for HILITE.

Note: Highlighting is not available for edit sessions that involve the following:
v Data sets with record lengths greater than 255
v Mixed mode edit sessions (normally used when editing DBCS data)
v Formatted data.

IMACRO—Specify an Initial Macro
The IMACRO primary command saves the name of an initial macro in the current
edit profile.

See “Initial Macros” on page 27 for more information on creating and using initial
macros.

Syntax
IMACRO {name | NONE}

name The name of the initial macro to be run when you are editing the data set
type that matches the current edit profile. This macro is run before any
data appears.

For more information about displaying and defining a profile, see
“Displaying or Defining an Edit Profile” on page 19.

NONE
Indicates that no macro is to be run at the beginning of each edit session.
The edit profile shows a value of NONE is shown in the edit profile when
no initial macro has been specified.

Examples
To save STARTUP as the initial macro, type:
IMACRO STARTUP

To reset the profile with no initial macro, type:

HILITE

Chapter 10. Edit Primary Commands 253

IMACRO NONE

LEVEL—Specify the Modification Level Number
The LEVEL primary command allows you to control the modification level that is
assigned to a member of an ISPF library.

See “Version and Modification Level Numbers” on page 29 for more information
about level numbers.

Syntax
LEVEL num

num The modification level. It can be any number from 0 to 99.

Description
To specify the modification level number:
1. On the Command line, type:

COMMAND ===> LEVEL num

where num is the new level number.
2. Press Enter.

Example
In Figure 140, the version and modification level numbers on line 1 show that this
is Version 1, Modification 3 (01.03). Type LEVEL 0 on the Command line to reset
the modification level number to 00.

After you press Enter, the editor resets the modification level, as shown in
Figure 141.

Figure 140. Member With Modification Level of 03

IMACRO

254 z/OS V1R2.0 ISPF Edit and Edit Macros

LOCATE—Locate a Line
The LOCATE primary command allows you to scroll up or down to a specified
line. The line then appears as the first line on the panel. There are two forms of
LOCATE: specific and generic.

Specific Locate Syntax
The specific form of the LOCATE command positions a particular line at the top of
the panel. You must specify either a line number or a label.
LOCATE {label | line-number}

label A previously assigned label. An error message
appears if the label is not currently assigned.

line-number An edit line number. If that line number exists, it
appears at the top. If the line number does not
exist, the line with the next lower number appears
at the top of the data area.

The line-number operand is a numeric value of up
to 8 digits. You do not need to type leading zeros.
If the operand contains 6 or fewer digits, it refers
to the number in the line command field to the left
of each line. If the line-number operand contains 7
or 8 digits, it refers to the sequence numbers in the
data records. For NUMBER ON STD, the editor
refers to the modification flag. For NUMBER OFF, it
refers to the ordinal line number (first=1, fifth=5, and
so on). For NUMBER ON COBOL, it refers to the
number in the line command field, which is the
data sequence number. See “Sequence Number
Format and Modification Level” on page 30 for
more information.

Figure 141. Member With Modification Level Reset to 00

LOCATE

Chapter 10. Edit Primary Commands 255

Generic Locate Syntax
The generic LOCATE command positions the panel to the first, last, next, or
previous occurrence of a particular kind of line.
LOCATE [FIRST] {CHANGE } [range]

[LAST] {COMMAND }
[NEXT] {ERROR }
[PREV] {EXCLUDED}

{LABEL }
{SPECIAL }
{INFOLINE}
{MSGLINE }
{NOTELINE}

FIRST Searches from the first line, proceeding forward.

LAST Searches from the last line, proceeding backward.

NEXT Searches from the first line of the page displayed, proceeding forward.

PREV Searches from the first line of the page displayed, proceeding backward.

CHANGE
Searches for a line with a change flag (==CHG>).

COMMAND
Searches for a line with a pending line command.

ERROR
Searches for a line with an error flag (==ERR>).

EXCLUDED
Searches for an excluded line.

LABEL
Searches for a line with a label.

SPECIAL
Searches for a special non-data (temporary) line:
v Bounds line flagged as =BNDS>
v Column identification lines flagged as =COLS>
v Information lines flagged as ======
v Mask lines flagged as =MASK>
v Message lines flagged as ==MSG>
v Note lines flagged as =NOTE=
v Profile lines flagged as =PROF>
v Tabs line flagged as =TABS>.

INFOLINE
Searches for information lines flagged with ======

MSGLINE
Searches for message lines flagged with ==MSG>

NOTELINE
Searches for note lines flagged with =NOTE=

range Two labels that define the group of lines to be searched.

Examples
To find the next special line, type:
LOCATE SPE

LOCATE

256 z/OS V1R2.0 ISPF Edit and Edit Macros

To find the first error line (==ERR>), type:
LOCATE ERR FIRST

To find the next line with a label, type:
LOC NEXT LABEL

To find the next excluded line between .START and .END, type:
LOC X .START .END

To find the first excluded line between .E and .S, type:
L FIRST .E .S X

To find the first message line, type:
LOCATE FIRST MSGLINE

MODEL—Copy a Model into the Current Data Set
The model name form of the MODEL primary command copies a specified dialog
development model before or after a specified line.

The class name form of the MODEL primary command changes the model class
that the editor uses to determine which model you want. For more information on
edit models, see Chapter 4. Using Edit Models.

Model Name Syntax
MODEL [model-name [qualifier...]] {AFTER label} [NOTES]

{BEFORE label} [NONOTES]

If you omit the model name or a required qualifier, or if there is a validation error,
the editor displays a series of selection panels from which you can select the
desired information.

model-name
The name of the model to be copied, such as VGET for the VGET service
model. This operand can also be one of the options listed on a model
selection panel, such as V1 for the VGET service model. Refer to ISPF
Planning and Customizing for a list of models and model names.

qualifier
The name of a model on a secondary model selection panel, such as
TBCREATE for the TBCREATE service model. This operand can also be one
of the options listed on a model selection panel, such as G1 for the
TBCREATE service model.

For example, a model selection panel allows you to enter T1 to choose
table models. Another model selection panel then appears for choosing
table models, such as G1 for the TBCREATE service model. Therefore, your
MODEL primary command could use either TABLES or T1 as the
model-name operand and either TBCREATE or G1 at the qualifier operand.
The simplest way would be to use TBCREATE or G1 as the model-name
operand and omit the qualifier operand. Refer to ISPF Planning and
Customizing for a list of models and model names.

AFTER label
Identifies the line after which the model is to be copied. If you have not
defined a label, use the A or B line command to specify the destination.

LOCATE

Chapter 10. Edit Primary Commands 257

The only time this operand or the BEFORE label operand is not required is
when the data set or member is empty.

BEFORE label
Identifies the line before which the model is to be copied. If you have not
defined a label, use the A or B line command to specify the destination.
The only time this operand or the AFTER label operand is not required is
when the data set or member is empty.

NOTES
Overrides the current edit profile setting for note mode, to include any
notes that are part of the model.

NONOTES
Overrides the current edit profile setting for note mode, to exclude any
notes that are part of the model.

Class Name Syntax
MODEL [CLASS [class-name]]

If you omit the class-name, or if there is a validation error, the editor displays a
series of selection panels from which you can select the desired information.

CLASS
When entered without the optional class-name operand, the editor displays
the Model Classes panel, from which you can select a model class. When
entered with the class-name operand, the macro specifies that the current
model class is to be replaced by class-name. In both cases, the new class
name is used for all models from that point on, until you change the
model class again or end the edit session.

class-name
Specifies a new class for the current edit session. It must be a name on the
Model Classes panel or an allowable abbreviation. The model class
coincides with the type of model, such as REXX, COBOL, or FORTRAN.

Example
You are editing a new member named NEWMEM and have not decided which
service to use first. Figure 142 shows the display screen for NEWMEM. Type
MODEL on the Command line without any operands. Here, the model name form
of the MODEL command is used and the A (after) line command is used instead of
the AFTER operand.

MODEL

258 z/OS V1R2.0 ISPF Edit and Edit Macros

The data set type is EXEC, so the editor displays the REXX Models panel (
Figure 143) when you press Enter. To begin with the VGET service, you type V1 on
the Option line and press Enter.

The editor inserts the VGET service model into the NEWMEM member, as shown
in Figure 144. Because the edit profile is set to NOTE ON, the model’s notes are also
included.

Figure 142. Before Model Command

REXX Models

Display Miscellaneous Library Access
D1 DISPLAY M1 SELECT L1 LMCLOSE L16 LMRENAME
D2 TBDISPL M2 CONTROL L2 LMERASE L17 LMHIER
D3 SETMSG M3 BROWSE L3 LMFREE L18 LMACT
D4 PQUERY M4 EDIT L4 LMGET L19 LMDEACT
D5 ADDPOP M5 LOG L5 LMINIT L20 LMREVIEW
D6 REMPOP M6 GETMSG L6 LMMADD L21 LMMDISP

M7 EDREC L7 LMMDEL L22 LMMOVE
File Tailoring M8 LIBDEF L8 LMMFIND L23 LMCOPY
F1 FTOPEN M9 LIST L9 LMMLIST L24 LMCOMP
F2 FTINCL M10 VIEW L10 LMMREN L25 LMMSTATS
F3 FTCLOSE L11 LMMREP L26 LMPRINT
F4 FTERASE Variables L12 LMOPEN L27 LMDINIT

V1 VGET L13 LMPROM L28 LMDLIST
Tables V2 VPUT L14 LMPUT L29 LMDFREE
T1 TABLES V3 VERASE L15 LMQUERY L30 LMDDISP

Enter END command to cancel MODEL command.

Option ===> __
F1=Help F2=Split F3=Exit F9=Swap F12=Cancel

Figure 143. REXX Models Panel (ISREMRXC)

MODEL

Chapter 10. Edit Primary Commands 259

MOVE—Move Data
The MOVE primary command moves a sequential data set or a member of a
partitioned data set into the data being edited.

Syntax
MOVE [member] [AFTER label]

(member) [BEFORE label]
[data set name]

member
A member of the ISPF library or partitioned data set you are editing.

data set name
A partially qualified or fully qualified data set name. If the data set is
partitioned you can include a member name in parentheses or select a
member from a member list.

AFTER label
The destination of the data that is being moved. AFTER label causes the
data to be moved after the specified label.

BEFORE label
The destination of the data that is being moved. BEFORE label causes the
data to be moved before the specified label.

The label can be either a label you define or one of the editor-defined labels, such
as .ZF and .ZL. If you have not defined a label and the editor-defined labels are
not appropriate for your purpose, use the A (after) or B (before) line command to
specify the data’s destination.

If the data set or member that you are editing is empty, you do not need to specify
a destination for the data being moved.

Figure 144. REXX Model of VGET Service

MOVE

260 z/OS V1R2.0 ISPF Edit and Edit Macros

Note: If the member name or data set name is less than 8 characters and the data
set you are editing is partitioned a like-named member is copied. If a
like-named member does not exist the name is considered to be a partially
qualified data set name.

Description
MOVE adds data that already exists to the data set or member that you are
editing. Use MOVE if you want to move data rather than copy it from one data set
or member to another.

The member or sequential data set is deleted after the move. For a concatenated
sequence of ISPF libraries, the deletion occurs only if the member was in the first
library.

To move data into an empty data set or member:
1. On the Command line, type:

Command ===> MOVE member
(member)
data set name

The member operand is optional. If you do not specify the name of a member
or a data set to be moved, the Edit Move panel appears. Enter the data set or
member name on this panel.

2. Press Enter. The data is moved.

To move data into a data set or member that is not empty:
1. On the Command line, type:

Command ===> MOVE member AFTER | BEFORE label
(member)
data set name

The member operand is optional.

The AFTER label and BEFORE label operands are optional, also. However, if
the data set or member that is to receive the moved data is not empty, you
must specify a destination for the moved data. Therefore, if you do not use a
label, substitute either the A (after) or B (before) line command as the
destination of the moved data. However, a number indicating that the A or B
command should be repeated cannot follow the line command.

If the data set or member is not empty and you do not specify a destination, a
MOVE/COPY Pending message appears in the upper right-hand corner of the
panel and the data is not moved. When you type a destination and press Enter,
the data is moved.

2. Press Enter. If you entered a member name or a data set name, the member or
data set is moved. Otherwise, the Edit Move panel appears. See the previous
example for more information.

See “Copying and Moving Data” on page 48 if you need more information.

Example
The following steps show how you can move data when you omit the member
name and the editor panels appear.

MOVE

Chapter 10. Edit Primary Commands 261

1. Type MOVE on the Command line and specify the destination of the operation.
In Figure 145, the data is to be moved after line 000700, as specified by the A
(after) line command.

2. When you press Enter, the Edit Move panel appears. Specify the data you want
moved.
This example (Figure 146) moves the data set member named MOVEFROM.

Figure 145. Member Before Data is Moved

Menu RefList Utilities Help
--

Edit/View Move

"Current" Data Set: __

From ISPF Library:
Project . . . PROJ1
Group PRIVATE . . . ________ . . . ________ . . . ________
Type DATA
Member . . . MOVEFROM (Blank or pattern for member selection list)

From Other Partitioned or Sequential Data Set:
Data Set Name . . ___
Volume Serial . . ______ (If not cataloged)

Data Set Password . . (If password protected)

Press ENTER key to move. (Member or sequential data set may be deleted)
Enter END command to cancel move.

Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 146. Edit Move Panel (ISREMOV1)

MOVE

262 z/OS V1R2.0 ISPF Edit and Edit Macros

3. Figure 147 shows the contents of the MOVEFROM member which is moved
into the original data set. This panel is shown only for this example, so you can
see the data that is being moved. It is not displayed during a move sequence.

4. When you press Enter, the editor moves the data and displays a short message
in the upper-right hand side of the panel. panel. Figure 148 shows the result of
using MOVE.

Figure 147. Data Set to be Moved

Figure 148. Member After Data Has Been Moved

MOVE

Chapter 10. Edit Primary Commands 263

NONUMBER—Turn Off Number Mode
The NONUMBER primary command turns off number mode, which controls the
numbering of lines in the current data.

Syntax
NONUMBER

The NONUMBER primary command has no operands.

Description
You can also use NUMBER OFF to turn off number mode.

When number mode is off, NONUMBER prevents any verification of valid line
numbers, generation of sequence numbers, and the renumbering of lines that
normally occurs when autonum mode is on.

Example
To turn number mode off by using NONUMBER, enter the following:
Command ===> NONUMBER

NOTES—Display Model Notes
The NOTES primary command sets note mode, which controls whether notes are
displayed when a dialog development model is inserted into the data.

Syntax
NOTES [ON]

[OFF]

ON Displays explanatory notes when a model is copied into the data being
edited or when notes are added to the edit session by an edit macro.

OFF Does not display explanatory notes.

Description
Note mode is saved in the edit profile. To check the setting of note mode:
1. On the Command line, type:

Command ===> PROFILE 4

2. Press Enter. The note mode setting appears as either NOTE ON or NOTE OFF on
the fourth line of the edit profile.

You can set the note mode with a primary command and then use the NOTES or
NONOTES operand on the MODEL command to override the default mode for a
particular model.

See “MODEL—Copy a Model into the Current Data Set” on page 257 for
information about copying dialog development models.

Examples
To set note mode on:
1. On the Command line, type:

Command ===> NOTES ON

NONUMBER

264 z/OS V1R2.0 ISPF Edit and Edit Macros

2. Press Enter. The next time you insert a model, the explanatory notes appear
along with the model.

To set note mode off:
1. On the Command line, type:

Command ===> NOTES OFF

2. Press Enter. The next time you insert a model, the explanatory notes are not
displayed along with the model.

NULLS—Control Null Spaces
The NULLS primary command sets nulls mode, which determines whether trailing
spaces in each data field are written to the panel as blanks or nulls.

Syntax
NULLS [ON STD]

[ON ALL]
[OFF]

ON STD
Specifies that in fields containing any blank trailing space, the space is
written as one blank followed by nulls. If the field is entirely empty, it is
written as all blanks.

ON ALL
Specifies that all trailing blanks and all-blank fields are written as nulls.

OFF Specifies that trailing blanks in each data field are written as blanks.

Description
Blank characters (X'40') and null characters (X'00') both appear as blanks. When
you use the I (insert) line command, the data entry area appears as blanks for
NULLS ON STD and as nulls for NULLS ON ALL.

Trailing nulls simplify use of the Ins (insert) key on the IBM 3270 keyboard. You
can use this key to insert characters on a line if the line contains trailing nulls.

Besides using the NULLS command, you can create nulls at the end of a line by
using the Erase EOF or Del (delete) key. Null characters are never stored in the
data; they are always converted to blanks.

Note: When you swap screens in split screen mode, the nulls are replaced by
spaces until you press an interrupt key, such as Enter, or a function key.

Examples
To set nulls mode on with all trailing blanks and all-blank fields written as nulls,
enter the following:
Command ===> NULLS ON ALL

To set nulls mode on with blank trailing space written as one blank followed by
nulls and empty fields written as all blanks, enter the following:
Command ===> NULLS ON STD

To set nulls mode off and thus have trailing blanks in each data field, enter the
following:

NOTES

Chapter 10. Edit Primary Commands 265

Command ===> NULLS OFF

NUMBER—Generate Sequence Numbers
The NUMBER primary command sets number mode, which controls the
numbering of lines in the current data.

Syntax
NUMBER [ON] [STD] [DISPLAY]

[OFF] [COBOL]
[STD COBOL]
[NOSTD]
[NOCOBOL]
[NOSTD NOCOBOL]

ON Automatically verifies that all lines have valid numbers in ascending
sequence and renumbers any lines that are either unnumbered or out of
sequence. You can also use RENUM to turn number mode on and
renumber lines.

The editor interprets the STD, COBOL, and DISPLAY operands only when
number mode is turned on.

OFF Turns number mode off. You can also use NONUMBER to turn number
mode off. If you alter or delete sequence numbers and enter NONUMBER
on the Command line at the same time, the editor issues the message Some
input data ignored and discards the data typed over the sequence
numbers. The editor converts the original sequence numbers to data.

STD Numbers the data in the standard sequence field. This is the default for all
non-COBOL data set types.

COBOL
Numbers the data in the COBOL field. This is the default for all COBOL
data set types.

STD COBOL
Numbers the data in both fields.

If both STD and COBOL numbers are generated, the STD number is
determined and then used as the COBOL number. This can result in
COBOL numbers that are out of sequence if the COBOL and STD fields
were not synchronized. Use RENUM to force synchronization.

NOSTD
Turns standard number mode off.

NOCOBOL
Turns COBOL number mode off.

NOSTD NOCOBOL
Turns both the standard number mode and COBOL number mode off.

DISPLAY
Causes the width of the data window to include the sequence number
fields. Otherwise, the width of the window does not include the sequence
number fields. When you display a data set with a logical record length of
80 and STD numbering, the sequence numbers are not shown unless you
are using a 3278 Model 5 terminal, which displays 132 characters.
Automatic left or right scrolling is performed, if required, so that the left
most column of the data window is the first column displayed.

NULLS

266 z/OS V1R2.0 ISPF Edit and Edit Macros

Description
Attention: If number mode is off, make sure the first 6 columns of your data set
are blank before turning COBOL number mode on. Otherwise, the data in these
columns is replaced by sequence numbers. If that happens and if edit recovery or
SETUNDO is on, you can use the UNDO command to recover the data. You can
also use CANCEL at any time to end the edit session without saving the data.

When number mode is on, NUMBER verifies that all lines have valid numbers in
ascending sequence. It renumbers any lines that are either unnumbered or out of
sequence, but it does not otherwise change existing numbers.

In number mode, the editor automatically generates sequence numbers in the data
for new lines created when data is copied or inserted. The editor also automatically
renumbers the data when it is saved if autonum mode is in effect.

If the number overlays the shift-in (SI) or shift-out (SO) characters, the double-byte
characters appear incorrectly and results are unpredictable.

Examples
To number data in the standard sequence field, enter the following:
Command ===> NUMBER ON STD

To number data in both the standard and COBOL fields and include sequence
numbers in the display, enter the following:
COMMAND ===> NUMBER ON STD COBOL DISPLAY

PACK—Compress Data
The PACK primary command sets pack mode, which controls whether the data is
to be stored in packed format.

The PACK command saves the pack mode setting in the edit profile. See “Packing
Data” on page 17 for more information about packing data.

Syntax
PACK [ON]

[OFF]

ON Saves data in packed format.

OFF Saves data in unpacked (standard) format.

Examples
To set pack mode on, enter the following:
Command ===> PACK ON

To set pack mode off, enter the following:
Command ===> PACK OFF

PASTE—Move or Copy Lines from Clipboard
The PASTE primary command moves or copies lines from a clipboard into an edit
session.

NUMBER

Chapter 10. Edit Primary Commands 267

Syntax
PASTE [clipboardname] [AFTER label]

[BEFORE label][KEEP | DELETE]

clipboardname
The name of the clipboard to use. If you omit this parameter, the ISPF
default clipboard (named DEFAULT) is used. You can define up to ten
additional clipboards. The size of the clipboards and number of clipboards
might be limited by installation defaults.

BEFORE label
The destination of the data that is being transferred from the clipboard.
BEFORE copies the data before the specified label.

AFTER label
The destination of the data that is being transferred from the clipboard.
AFTER copies the data after the specified label.

KEEP Records are copied and not removed from the clipboard. DELETE records
are copied and not removed from the clipboard.

DELETE
Remove lines from the clipboard. You can change this default within the
EDSET primary command.

Notes:

1. You should always specify KEEP or DELETE in an edit macro because the
default behavior may have been changed by the user.

2. You can specify the default behavior–KEEP or DELETE– using the EDITSET
primary command.

Description
PASTE copies or moves lines from a specified clipboard to the current edit session.
If lines in the clipboard are longer than the lines in the edit session, they are
truncated.

The portion of the line that is saved in the clipboard is only the data portion of the
line. Line numbers are not saved. If the data was CUT from a data set that had
sequence numbers and is PASTEd into an edit session without sequence numbers,
or if it was CUT from a data set without sequence numbers and PASTEd into a
session with sequence numbers, some shifting of data is likely to occur.

Example
To paste data from the default clipboard to the line after the last line in the edit
session:
PASTE AFTER .ZLAST

To paste data from the default clipboard to the line after the first line in the edit
session, without clearing the contents of the clipboard:
PASTE AFTER .ZFIRST KEEP

PASTE

268 z/OS V1R2.0 ISPF Edit and Edit Macros

|

|
|

|
|

PRESERVE - Enable Saving of Trailing Blanks
The PRESERVE primary command enables or disables the saving of trailing blanks
in the editor. This gives you the ability to override the setting for the Preserve VB
record length field on the edit entry panel.

Syntax
PRESERVE [ON]

[OFF]

ON The editor preserves the record length of the record when the data is
saved.

OFF Turns truncation on. ISPF removes trailing blanks when saving variable
length files.

Regardless of the PRESERVE setting, if a line has a length of zero, ISPF saves 1
blank.

Description
PRESERVE ON causes the editor to save trailing blanks for variable length files.
The number of blanks saved for a particular record is determined by one of the
following:
v the original length of the record when it was read in to the editor
v the number of blanks required to pad the record length specified by the

SAVE_LENGTH edit macro command
v the length of the record that was saved on disk during a previous SAVE request

in the same edit session.

PRESERVE OFF causes the editor to truncate trailing blanks. If a line is empty ISPF
saves 1 blank.

Use of the PRESERVE command does not prevent the editor from working on data
past the specified record length. The length set and returned by the PRESERVE
command is only used when the data is written and does not affect the operation
of other edit functions.

Examples
To enable the editor to remove trailing blanks when data is saved, enter the
following:
Command ===> PRESERVE OFF

To save the trailing blanks, enter the following:
Command ===> PRESERVE ON

PROFILE—Control and Display Your Profile
The control form of the PROFILE primary command appears your current edit
profile, defines a new edit profile, or switches to a different edit profile.

The lock form of the PROFILE primary command locks or unlocks the current edit
profile.

PRESERVE

Chapter 10. Edit Primary Commands 269

Profile Control Syntax
PROFILE [name] [number]

name The profile name. It can consist of up to 8 alphanumeric characters, the
first of which must be alphabetic. The edit profile table is searched for an
existing entry with the same name. That profile is then read and used. If
one is not found, a new entry is created in the profile table.

If you omit this operand, the current edit profile is used.

number
The number of lines, from 0 through 9, of profile data to be displayed.
When you type 0 as the number, no profile data is displayed. When no
operands are entered, the first five lines, which contain the =PROF> flags,
always appear. However, the =MASK> and =TABS> lines are not displayed if
they contain all blanks; if the =MASK> and/or =TABS> lines do contain
data, they appears, followed by the =COLS> line.

For more information about displaying and defining a profile, see “Displaying or
Defining an Edit Profile” on page 19.

Profile Lock Syntax
PROFILE {LOCK | UNLOCK}

LOCK Specifies that the current values in the profile are saved in the edit profile
table and are not modified until the profile is unlocked. The current copy
of the profile can be changed, either because of commands you enter that
modify profile values (BOUNDS and NUMBER, for example) or because of
differences in the data from the current profile settings. However, unless
you unlock the edit profile, the saved values replace the changes when you
end the edit session.

Caps, number, stats, and pack mode are automatically changed to fit the
data. These changes occur when the data is first read or when data is
copied into the data set. Message lines (==MSG>) are inserted in the data set
to show you which changes occurred.

Note: To force caps, number, stats, or pack mode to a particular setting,
use an initial macro. Be aware, however, that if you set number
mode on, data may be overlaid.

UNLOCK
Specifies that the editor saves changes to profile values.

See “Locking an Edit Profile” on page 21 for more information about locking and
unlocking the profile.

Profile Reset Syntax
PROFILE RESET

RESET
Specifies that the ZDEFAULT profile is to be removed and the site-wide
configuration for new edit profiles is to be used.

See “Locking an Edit Profile” on page 21 for more information about locking and
unlocking the profile.

PROFILE

270 z/OS V1R2.0 ISPF Edit and Edit Macros

Description
To display the current edit profile:
1. On the Command line, type:

Command ===> PROFILE number

2. Press Enter. The current edit profile appears.

To switch edit profiles or define a new edit profile without displaying the new
profile:
1. On the Command line, type:

Command ===> PROFILE name 0

where name is the name of the edit profile to which you want to switch. This
also specifies that no lines are to be displayed. If you want to display the new
profile, you can omit the number or enter a number from 1 to 9.

2. Press Enter. The profile specified by the name operand becomes the active edit
profile, but is not displayed if you entered 0. If the profile does not exist, an
entry is created for it in the edit profile table, using the values of the current
edit profile.

To lock the current edit profile:
1. On the Command line, type:

Command ===> PROFILE LOCK

2. Press Enter. The values in the current edit profile are saved in the edit profile
table. From this point on, any changes you make to the current edit profile
affect only the current edit session. Values that were saved when the current
profile was locked are used the next time you begin an edit session with this
profile.

To unlock an edit profile:
1. On the Command line, type:

Command ===> PROFILE UNLOCK

2. Press Enter. From this point on, any changes that you make to the current edit
profile replace any values that may have been saved for this profile in the edit
profile table. Also, these changes are saved when you end the current edit
session.

Example
Figure 149 shows a typical edit profile for a REXX data set. The display results
from entering PROFILE with no operands. The =TABS> and =MASK> lines appear
because they contained data. If they had been empty, they would not have
appeared.

PROFILE

Chapter 10. Edit Primary Commands 271

The sample profile contains the following information:
v The first profile line (=PROF>) shows the profile name (EXEC), the data set record

format and length (FIXED - 80), and the settings for edit recovery mode
(RECOVERY ON) and number mode (NUMBER ON STD).

v The second profile line shows the settings for caps mode (CAPS ON), hexadecimal
mode (HEX OFF), nulls mode (NULLS OFF), tabs mode (TABS OFF), and UNDO
mode (SETUNDO STG).

v The third profile line shows the settings for the auto modes: autosave
(AUTOSAVE ON), autonum (AUTONUM OFF), and autolist (AUTOLIST OFF). It also shows
the setting for stats mode (STATS ON).

v The fourth profile line shows the lock status of the EXEC profile
(PROFILE UNLOCK), the name, if any, of the initial macro called at the beginning of
the edit session (IMACRO NONE), and the settings for pack mode (PACK OFF) and
note mode (NOTE ON).

v The fifth profile line shows the current hilite status (HILITE OFF).
v The last four lines of the edit profile show the tabs settings (=TABS>), edit mask

(=MASK>), bounds settings (=BNDS>), and the column position line (=COLS>).

RCHANGE—Repeat a Change
RCHANGE repeats the change requested by the most recent CHANGE command.

Syntax
RCHANGE

Description
You can use this command to repeatedly change other occurrences of the search
string. After a string NOT FOUND message appears, the next RCHANGE issued starts

Figure 149. Edit Profile Display

PROFILE

272 z/OS V1R2.0 ISPF Edit and Edit Macros

at the first line of the current range for a forward search (FIRST or NEXT specified)
or the last line of the current range for a backward search (LAST or PREV
specified).

Note: RCHANGE is normally assigned to a program function key, although you
can issue it directly from the Command line.

RECOVERY—Control Edit Recovery
RECOVERY sets edit recovery mode, which allows you to recover data after a
system failure or power outage.

Syntax
RECOVERY [ON | OFF]

[WARN | NOWARN | SUSP]

ON The system creates and updates a recovery data set for each change.

OFF The system does not create and update a recovery data set.

WARN
This operand no longer has a practical function due to a software change.
However, the primary command continues to accept the operand for
compatibility reasons.

NOWARN
This operand no longer has a practical function due to a software change.
However, the primary command continues to accept the operand for
compatibility reasons.

SUSP This operand functions the same as the ON operand.

Note: When SETUNDO is enabled during installation, both the RECOVERY
primary command and edit macro command continue to accept the
NOWARN and WARN keywords for compatibility reasons, but the value is
ignored. NOWARN will always be in effect.

Description
You cannot edit data recursively while you are in recovery.

Attention:

If the data set to be recovered was edited by another user before edit recovery, the
changes made by the other

See “Undoing Edit Interactions” on page 71 for more information.

To turn on edit recovery mode:
1. On the Command line, type:

Command ===> RECOVERY ON

RECOVERY can be abbreviated REC. This command can also ensure that your
edit session is not lost due to a system failure.

2. Press Enter. The editor begins recording an audit trail of your interactions.
After a system failure, the editor uses that record to reestablish the edit session
at the time of failure.

RCHANGE

Chapter 10. Edit Primary Commands 273

Note: For edit recovery to work properly, the data set to be recovered, the edit
recovery data set, and the edit recovery table all must exist, be cataloged,
and be intact. For example, with RECOVERY on, uncataloging a data set
and then trying to recover it fails.

To turn off edit recovery mode:
1. On the Command line, type:

COMMAND ===> RECOVERY OFF

2. Press Enter. The editor stops recording your interactions. Edit recovery is not
available following a system failure. When an edit session is recovered, the data
is scrolled all the way to the left when the recovery edit session begins.

See “Edit Recovery” on page 44 for more information about edit recovery.

RENUM—Renumber Data Set Lines
RENUM immediately turns on number mode and renumbers all lines, starting
with number 100 and incrementing by 100. For members exceeding 10 000, the
increment would be less than 100.

Syntax
RENUM [ON] [STD] [DISPLAY]

[COBOL]
[STD COBOL]

ON Automatically verifies that all lines have valid numbers in ascending
sequence and renumbers any lines that are either unnumbered or out of
sequence. It also turns number mode on and renumbers lines.

The STD, COBOL, and DISPLAY operands are interpreted only when
number mode is turned on.

STD Numbers the data in the standard sequence field. This is the default for all
non-COBOL data set types.

COBOL
Numbers the data in the COBOL field. This is the default for all COBOL
data set types.

Attention:

If number mode is off, make sure the first 6 columns of your data set are
blank before using either the NUMBER ON COBOL or NUMBER ON STD
COBOL command. Otherwise, the data in these columns is replaced by the
COBOL sequence numbers. If that happens and if edit recovery or
SETUNDO is on, you can use the UNDO command to recover the data. Or,
you can use CANCEL at any time to end the edit session without saving
the data.

STD COBOL
Numbers the data in both fields.

If both STD and COBOL numbers are generated, the STD number is
determined and then used as the COBOL number. This can result in
COBOL numbers that are out of sequence if the COBOL and STD fields are
not synchronized. Use RENUM to synchronize them.

DISPLAY
Causes the width of the data window to include the sequence number

RECOVERY

274 z/OS V1R2.0 ISPF Edit and Edit Macros

fields. Otherwise the width of the window does not include the sequence
number fields. When you display a data set with a logical record length of
80 and STD numbering, the sequence numbers are not shown unless you
are using a 3278 Model 5 terminal, which displays 132 characters. The
editor automatically scrolls left or right, if required, so that the left most
column of the data window is the first column to appear.

Description
To renumber all lines using the standard sequence fields only:
Command ===> RENUM STD

To renumber all lines using both the standard and COBOL sequence fields:
Command ===> RENUM STD COBOL

To renumber all lines using the COBOL sequence fields only:
Command ===> RENUM COBOL

To renumber all lines using both the standard and COBOL sequence fields and
specifying that the data window is to include the sequence number fields:
Command ===> RENUM STD COBOL DISPLAY

To renumber all lines by using the standard sequence fields only and specifying
that the data window is to include the sequence number fields:
Command ===> RENUM DISPLAY

Here, the DISPLAY operand is the only operand needed because STD is the
default.

Example
In Figure 150, the line numbers are not incremented uniformly. Type RENUM on
the Command line. Figure 151 shows how the lines are renumbered after you press
Enter.

RENUM

Chapter 10. Edit Primary Commands 275

REPLACE—Replace Data
The REPLACE primary command replaces a sequential data set or a member of a
partitioned data set with data you are editing. If the member you want to replace
does not exist, the editor creates it.

Figure 150. Member Before Lines Are Renumbered

Figure 151. Member After Lines Are Renumbered

RENUM

276 z/OS V1R2.0 ISPF Edit and Edit Macros

Syntax
REPLACE [member] [range]
REPLACE (member) [range]
REPLACE [data_set]
REPLACE [data_set(member)]

member
The name of the member to be replaced in the partitioned data set
currently being edited. If a name of eight characters or fewer is specified
and it could be a member name or a data set name, REPLACE searches for
a member name first. If no member is found, then the name is used as a
data set name. If the member does not exist, the editor creates it. If you are
using a concatenated sequence of libraries, the editor writes the member to
the first library in the sequence. This operand is optional.

To replace a sequential data set or a member of a different partitioned data
set, enter REPLACE without a member operand. The editor displays the
Edit Replace panel, from which you can enter the data set name.

data_set
A partially qualified or fully qualified sequential data set you want to
replace.

data_set(member)
A partially qualified or fully qualified partitioned data set and member
you want to replace.

range Two labels that show which lines replace the member or data set. Specify a
pair of labels that show the beginning and end of the group of lines.

Description
To replace a member of a partitioned data set or to replace a sequential data set:
1. On the Command line, type:

Command ===> REPLACE member range
Command ===> REPLACE (member) range
Command ===> REPLACE data_set range
Command ===> REPLACE data_set(member) range

The member operand is optional unless you specify the name of a partitioned
data set. It represents the name of the member that you want to replace. If you
specify a data set name only, it must be a sequential data set.

The range operand is optional, also. It represents a pair of labels that show the
first and last lines in a group of lines used to replace the member.

If you omit the range operand, you must specify the lines by using either the C
(copy) or M (move) line command. See the descriptions of these commands if
you need more information about them.

If you omit the range operand and do not enter one of the preceding line
commands, a REPLACE Pending message is displayed in the upper-right corner
of the panel.

2. Press Enter. If you did not specify a member name or a data set name, the Edit
Replace panel is displayed. Enter the member name on this panel and press
Enter again. If you used either a pair of labels or a C line command, the data is
copied from the member that you are editing into the member that you are

REPLACE

Chapter 10. Edit Primary Commands 277

replacing. If you used the M line command, however, the data is removed from
the member that you are editing and placed in the member that you are
replacing.
If the data set specified does not exist, ISPF prompts you to see if the data set
should be created. You can create the data set using the characteristics of the
source data set as a model, or specify the characteristics for the new data set.
You can suppress this function through the ISPF configuration table, causing
any CREATE request for a non-existent data set to fail.

See “Creating and Replacing Data” on page 47 for more information about the
REPLACE command.

Example
The following steps show how you can replace a member when you omit the
member name. These same steps apply when you create data.
1. Type REPLACE and specify which lines you want to copy or move into the data

set or member. The example in Figure 152 uses the MM (block move) line
command to move a block of lines from the data.

2. When you press Enter, the Edit Replace panel (Figure 153) appears. Type the
name of the member to be replaced and press Enter. A member is created when
you type the name of a member that does not already exist. The name of the
member replaced in this example is REPMEM.

Figure 152. Member Before Other Member Is Replaced

REPLACE

278 z/OS V1R2.0 ISPF Edit and Edit Macros

3. Figure 154 shows the lines remaining in the data being edited after the
specified lines were moved.

4. Figure 155 shows the contents of the replaced member.

Menu RefList Utilities Help
--

Edit/View Replace
More: -

To ISPF Library:
Project . . . V$ICB
Group PRIVATE . . . ________ . . . ________ . . . ________
Type CLIST
Member . . .

To Other Sequential Data Set or Partitioned Data Set Member:
Data Set Name . . __
Volume Serial . . _______ (If not cataloged)

Data Set Password . . (If password protected)

Enter "/" to select option
_ Pack "Replace" Data Set

Press ENTER key to replace. Enter END command to cancel replace.
Command ===> ___
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 153. Edit - Replace Panel (ISRERPL1)

Figure 154. Member After the Other Member Has Been Replaced

REPLACE

Chapter 10. Edit Primary Commands 279

RESET—Reset the Data Display
The RESET primary command can restore line numbers in the line command area
when those line numbers have been replaced by labels, pending line commands,
error flags, and change flags. RESET can also delete special lines from the display,
redisplay excluded lines, and temporarily disable the highlighting of FIND strings.

Syntax
RESET [CHANGE] [range]

[COMMAND]
[ERROR]
[EXCLUDED]
[FIND]
[LABEL]
[SPECIAL]

You can type the operands in any order. If you do not specify any operands,
RESET processes all operands except LABEL.

CHANGE
Removes ==CHG> flags from the line command area.

COMMAND
Removes any pending line commands from the line command area.

ERROR
Removes ==ERR> flags from the line command area.

EXCLUDED
Redisplays any excluded line.

FIND Turns off highlighting of FIND strings until the next FIND, RFIND,
CHANGE, or RCHANGE command. SEEK and EXCLUDE do not return
the highlighting of FIND strings in this manner.

Figure 155. Other Member Replaced

RESET

280 z/OS V1R2.0 ISPF Edit and Edit Macros

The resetting of FIND highlighting does not honor the range specified on
the RESET command.

LABEL
Removes labels from the line command area.

SPECIAL
Deletes any temporary line from the panel:
v Bounds line flagged as =BNDS>
v Column identification lines flagged with =COLS>
v Information lines flagged with ======
v Mask lines flagged as =MASK>
v Message lines flagged as ==MSG>
v Note lines flagged with =NOTE=
v Profile lines flagged as =PROF>
v Tabs line flagged as =TABS>.

range Specifies the range of lines to be reset. The labels can be labels that the
PDF component has defined or labels that you have defined. The range
operand is useful when you do not want to reset lines in the complete data
set. You can specify the range operand with any other operand on the
command.

Description
RESET scans every line of data. If you want to delete a small number of special
lines, you can get faster response time if you use the D (delete) line command.

Examples
To reset all lines except those that contain labels:
Command ===> RESET

To reset only the lines that contain labels:
Command ===> RESET LABEL

To reset only the lines that contain pending line commands:
Command ===> RESET COMMAND

To reset only the lines that contain ==ERR> flags:
Command ===> RESET ERROR

To reset only the lines that contain ==CHG> flags:
Command ===> RESET CHANGE

To reset only the special (temporary) lines:
Command ===> RESET SPECIAL

To reset only the excluded lines:
Command ===> RESET EXCLUDED

To reset all lines between and including the .START and .STOP labels, except those
that contain labels:
Command ===> RESET .START .STOP

RESET

Chapter 10. Edit Primary Commands 281

RFIND—Repeat Find
RFIND locates the search string defined by the most recent SEEK, FIND, or
CHANGE command, or excludes a line containing the search string defined by the
previous EXCLUDE command.

RFIND can be used repeatedly to find other occurrences of the search string. After
a string NOT FOUND message is displayed, the next RFIND issued starts at the first
line of the current range for a forward search (FIRST or NEXT specified), or the
last line of the current range for a backward search (LAST or PREV specified).

Syntax
RFIND

Note: RFIND is normally assigned to a program function key, although you can
issue it directly from the Command line.

RMACRO—Specify a Recovery Macro
RMACRO saves the name of a recovery macro in the edit profile.

Syntax
RMACRO {name | NONE}

name The name of the recovery macro to be run. The name can be preceded by
an exclamation point (!) to show that it is a program macro.

NONE
The name to prevent a recovery macro from being run.

Description
To specify the name of a recovery macro:
1. On the Command line, type:

Command ===> RMACRO name

where name is the name of the recovery macro that you want to run.
2. Press Enter.

See “Recovery Macros” on page 115 for more information.

Example
To define RESTART as the recovery macro, type:
Command ===> RMACRO RESTART

To reset the profile with no recovery macro, type:
Command ===> RMACRO NONE

SAVE—Save the Current Data
SAVE saves edited data without ending your edit session. Generally, you do not
need to use SAVE if recovery mode is on. See AUTOSAVE, CANCEL, and END for
more information about saving data.

RFIND

282 z/OS V1R2.0 ISPF Edit and Edit Macros

Syntax
SAVE

Description
SAVE writes the data to the same data set from which it was retrieved unless you
specified a concatenated sequence of partitioned data sets on the Edit Entry panel.
In that case, the data is saved in the first library in the concatenation sequence,
regardless of from which library it came. For a sequential data set, the complete
data set is rewritten. For a partitioned data set, the member is rewritten with the
same member name. If stats mode is on, the library statistics for the member are
automatically updated.

If both number mode and autonum mode are on, the data is automatically
renumbered before it is saved.

If SAVE cannot successfully rewrite the data because of I/O errors or insufficient
space, the system displays a message in the upper-right corner of the panel,
accompanied by an audible alarm, if installed. You can then try to save the data in
another data set by taking the following steps:
1. Enter CREATE or REPLACE with no operand on the Command line. Use

CREATE only if the destination is a member of a partitioned data set, such as
an ISPF library member.

2. Type CC on the first and last data lines to specify that all lines are to be copied.
Then press Enter.

3. Fill in the data set and member name of the alternate library on the Edit Create
or Edit Replace panel, and press Enter.

When a space ABEND such as D37 occurs, ISPF unallocates the data set so that
you can swap to another screen or user ID and reallocate the data set. This does
not occur for data sets that were edited using the DDNAME parameter of the
EDIT service.

See “Creating and Replacing Data” on page 47 for more information.

Example
To save the data in the data set or member that you are editing:
1. On the Command line, type:

Command===> SAVE

2. Press Enter.

SETUNDO—Set the UNDO Mode
The SETUNDO primary command determines whether or not the UNDO
command is available and how the history of changes should be managed.

Note: The SETUNDO command is ignored if UNDO from storage is not enabled
by the installer or person who maintains the ISPF product. For information
on enabling UNDO from storage, see ISPF Planning and Customizing

Syntax
SETUNDO [STORAGE | RECOVER | ON | OFF]

SAVE

Chapter 10. Edit Primary Commands 283

STORAGE
Enables the saving of edit changes in storage. If the setting is changed, and
the profile lines are displayed, the profile lines reflect the new value after
the change (SETUNDO STG).

RECOVER
Enables the saving of edit changes through the recovery file only. If
recovery is off, it is turned on by this command. If the setting is changed
and the profile lines are displayed, the profile lines reflect the new value
after the change (SETUNDO REC).

ON Enables edit changes to be saved in STORAGE

OFF Disables the saving of edit changes in storage. If SETUNDO OFF is
specified and recovery is on, then a state of SETUNDO RECOVER is set
and UNDO is available from the recovery file. All transactions on the
storage UNDO chain are removed, and no changes before SETUNDO OFF
can be undone (unless RECOVERY ON is specified). If the setting is
changed and the profile lines are displayed, the profile lines reflect the new
value after the change (SETUNDO OFF or SETUNDO REC).

Description
SETUNDO allows you to specify how changes you make during your edit session
are to be recorded and used by the UNDO command. UNDO can be run when
either SETUNDO or RECOVERY is on. Changes can be recorded in storage, in the
recovery file, or in both places. Saving the changes in storage only is the fastest
method.

To enable recording in storage:
1. On the Command line, type either of the following:

Command ===> SETUNDO STORAGE
OR

Command ===> SETUNDO

2. Press Enter.

Valid abbreviations for STORAGE are STO, STG, STOR and STORE. SETUNDO
may be abbreviated SETU. The value of ON is accepted to compliment the OFF
state.

To use the recovery file:
1. On the Command line, type:

Command ===> SETUNDO RECOVER

2. Press Enter.

If RECOVERY is off, it is turned on by this command. REC is a valid abbreviation
for RECOVER.

To turn off recording and disable the UNDO command, enter:
Command ===> SETUNDO OFF

Note: If recovery is on, setting SETUNDO OFF is the same as specifying
SETUNDO REC, and the recovery file is used for UNDO.

SETUNDO

284 z/OS V1R2.0 ISPF Edit and Edit Macros

Example
The edit profile shown in Figure 156 shows SETUNDO set to STORAGE and
RECOVERY OFF.

SORT—Sort Data
The SORT primary command puts data in a specified order.

Syntax
SORT [range] [X] [sort-field1 ... sort-field5]

[NX]

range Two labels that define the first and last lines to be sorted.

X Sorts only lines that are excluded.

NX Sorts only lines that are not excluded.

sort-field1 ... sort-field5
Specifies the fields to be used in sorting data. You can specify up to five
sort fields as follows:
[A] [start-col [end-col]]
[D]

where:

A Specifies ascending order. It can either precede or follow the
column specification. A is the default.

D Specifies descending order. It can either precede or follow the
column specification.

start-col
Defines the starting column of the field that is to be compared. It
must be within the current boundaries.

Figure 156. SETUNDO STORAGE and RECOVERY OFF

SETUNDO

Chapter 10. Edit Primary Commands 285

end-col
Defines the ending column of the field that is to be compared. It
must be within the current boundaries.

If you specify several fields, you must specify both the starting and ending
columns of each field. The fields cannot overlap. If you specify A or D for
one field, you must specify it for all fields.

Description
SORT operates in two different modes, based on the hexadecimal mode status. If
hexadecimal mode is on, the data is ordered according to its hexadecimal
representation. If hexadecimal mode is off, data is sorted in the collating sequence
defined for the national language being used.

Sorting Data Without Operands
For SORT with no operands, the editor compares the data within the current
boundaries character by character, and then orders it line by line in the proper
collating sequence. It ignores data outside the current boundaries during both
operations. Therefore only the data inside the current boundaries is changed.
Labels, excluded lines, line numbers, and change, error, and special line flags are
considered associated with the data, and therefore point to the same data fields
after the sort as they did before the sort.

For example, if you issue a CHANGE ALL that changes the first, third, and sixth
lines in a data set, these lines are flagged with the change flag, ==CHG>. If you then
issue a SORT command that results in the former lines 1, 3 and 6 becoming the
first, second and third lines of the sorted file, the changed line flags would now
exist on the first, second and third lines of the sorted data set.

It is important to properly set the boundaries before issuing SORT. SORT is a
powerful tool for editing data that may be formatted in multiple columns. You can
set the boundaries, for example, to the first half of a record and sort one column of
data. Then you can set the boundaries to the last half of the record and sort a
second column of data.

Limiting the SORT Command
Sorting is limited to data within the current boundaries. You can specify up to five
sort fields by labelling starting and ending columns. You can also identify each
field as having data sorted in either ascending or descending order.

Optionally, you can limit sorting to a range of lines by specifying the labels of the
first and last lines of the range. You can also limit sorting to either excluded or
nonexcluded lines.

If you have labels or line ranges that are between the labels or line ranges specified
with SORT, you can keep SORT from rearranging them by:
v Excluding them before you enter SORT
v Using the NX operand to sort only lines that are not excluded.

For more information, see the definition of the NX operand and
“EXCLUDE—Exclude Lines from the Display” on page 242.

Sorting DBCS Data
When sorting data that contains DBCS character strings, you must ensure that no
DBCS string crosses the boundaries. Also, all records must have the same format at
the boundaries, although the format of the left and right boundaries can differ.

SORT

286 z/OS V1R2.0 ISPF Edit and Edit Macros

If a boundary divides a DBCS character, or if all records do not have the same
format at the boundaries, the result is unpredictable.

Examples
The following form of the SORT command sorts in ascending order. The
start-column is the left boundary and the end-column is the right boundary:
SORT

The following form of the SORT command sorts in descending order. The
start-column is the left boundary and the end-column is the right boundary:
SORT D

The following form of the SORT command sorts in ascending order. The
start-column is column 5 and the end-column is the right boundary:
SORT 5

The following form of the SORT command sorts in descending order. The
start-column is column 5 and the end-column is the right boundary:
SORT 5 D

STATS—Generate Library Statistics
The STATS primary command sets stats mode, which creates and maintains
statistics for a member of a partitioned data set.

Syntax
STATS [ON]

[OFF]

ON Creates or updates library statistics when the data is saved.

OFF Does not create or update library statistics.

See “Statistics for PDS Members” on page 28 for more information.

Examples
To set stats mode on:
Command ===> STATS ON

To set stats mode off:
Command ===> STATS OFF

SUBMIT—Submit Data for Batch Processing
The SUBMIT primary command submits the member or data set you are editing
(or the part of the member or data set defined by the range of line pointers or the
X or NX parameters) to be processed as a batch job.

Syntax
SUBMIT [range] [X]

[NX]

range Two labels that define the first and last lines to be submitted.

X Submits only lines that are excluded from the display.

SORT

Chapter 10. Edit Primary Commands 287

NX Submits only lines that are not excluded from the display.

Description
The editor does not supply a job statement when you enter the SUBMIT command.
You can supply job statements as part of the data being submitted. When you
supply a job statement, only the job name is logged to the ISPF log data set to
ensure the protection of sensitive data.

The PDF component uses the TSO SUBMIT command to submit the job.

Examples
To submit lines between labels .START and .END as a batch job:
Command ===> SUBMIT .START .END

To submit all of the data as a batch job:
Command ===> SUBMIT

To submit only non-excluded lines as a batch job:
Command ===> SUBMIT NX

TABS—Define Tabs
The TABS primary command:
v Turns tabs mode on and off
v Defines the logical tab character
v Controls the insertion of attribute bytes at hardware tab positions defined with

TABS.

Use PROFILE to check the setting of tabs mode and the logical tab character. See
“Using Tabs” on page 68 if you need more information about using tabs.

Syntax
TABS [ON] [STD]

[OFF] [ALL]
[tab-character]

ON Turns tabs mode on, which means that logical tabs can be used to break up
strings of data. This is the default operand. If no other operands are
included, all hardware tab positions (asterisks) that contain a blank or null
character are activated because STD is also a default operand. The TABS ON
STD message appears in the profile display.

OFF Turns tabs mode off, which means that logical tabs cannot be used.
Attribute bytes are deleted from all hardware tab positions, causing the
Tab Forward and Tab Backward keys to ignore hardware tabs defined on
the =TABS> line. Blanked-out characters occupying these positions reappear.
The TABS OFF message appears in the profile display.

STD Activates all hardware tab positions (asterisks) that contain a blank or null
character. The editor inserts attribute bytes, which cannot be typed over, at
these positions. STD is the default operand. You can use the Tab Forward
and Tab Backward keys to move the cursor one space to the right of the
attribute bytes. The TABS ON STD message appears in the profile display.

ALL Causes an attribute byte to be inserted at all hardware tab positions.

SUBMIT

288 z/OS V1R2.0 ISPF Edit and Edit Macros

Characters occupying these positions are blanked out and the attribute
bytes cannot be typed over. The Tab Forward and Tab Backward keys can
be used to move the cursor one space to the right of these attribute bytes.
The TABS ON ALL message appears in the profile display.

tab-character
Defines a single character that is not a number, letter, or command
delimiter as the logical tab character. This character is used with hardware
tab definitions. The TABS ON tab-character message appears in the profile
display.

You can enclose the character in quotes (' or "), although this is not
necessary unless a quote or a comma (,) is used as the tab character.

The tab-character operand causes the data string that follows the logical
tab character to align itself one space to the right of the first available
hardware tab position when you press Enter. No attribute bytes are
inserted.

If no hardware tabs are defined, the editor aligns the data vertically. If
software tabs are defined, the first data string is aligned under the first
software tab position and the remaining data strings are aligned at the left
boundary. If neither software nor hardware tabs are defined, the editor
aligns all the data strings at the left boundary.

With the tab-character operand, the Tab Forward and Tab Backward keys
ignore hardware tab positions because no attribute bytes are inserted.

You can type the operands in any order, but keep the following rules in mind:
v The tab-character and ALL operands cannot be used together, because the

tab-character operand does not allow the PDF component to insert attribute
bytes at tab positions, while the ALL operand does.

v The TABS primary command has no effect on software tabs. Whenever software
tabs are defined, you can always use the Enter key to move the cursor to a
software tab position in the data, even if tabs mode is off. Attribute bytes are not
inserted at software tab positions.

Example
Define the pound sign (#) as a logical tab character by typing the following and
pressing Enter:
Command ===> TAB #

Now, enter the COLS line command by typing COLS in the line command area and
pressing Enter. A partial =COLS> line with positions 9 through 45 is shown in the
following example.

To use the logical tab character you have defined (#), you also need at least one
hardware tab. For this example, we will assume that three hardware tabs have
already been defined in columns 20, 30, and 40:
=COLS> -1----+----2----+----3----+----4----+
=TABS> * * *

If you then type the following information on a line:
#$4237#$ 596#$ 81

TABS

Chapter 10. Edit Primary Commands 289

the data $4237 is repositioned after the first tab column, defined by an * in the
=TABS line, when you press Enter. The $ 596 is repositioned after the next tab
column and so forth, as follows:
=COLS> -1----+----2----+----3----+----4----+
=TABS> * * *

$4237 $ 596 $ 81

UNDO—Reverse Last Edit Interaction
The UNDO primary command allows you to remove the data modifications of a
previous interaction.

Note: The SETUNDO command is ignored if UNDO from storage is not enabled
by the installer or person who maintains the ISPF product. For information
on enabling UNDO from storage, see ISPF Planning and Customizing

Syntax
UNDO

Description
Each time you enter UNDO, it reverses edit interactions, one at a time, in the order
in which they have been entered. To use UNDO, you must have either RECOVERY
on or SETUNDO on. You can undo only those changes made after RECOVERY or
SETUNDO was turned on. SETUNDO and RECOVERY can be specified in your
edit profile. You can also use the edit macro command ISREDIT SETUNDO to turn
UNDO processing on and off. See “SETUNDO—Set UNDO Mode” on page 392 for
more information.

RECOVERY is now optional and is not required to run UNDO. Performance
improves if the editor is run with SETUNDO STORAGE and RECOVERY OFF. In
this mode, non-data changes, such as setting line labels, adding note lines, and
inserting blank lines, can be undone by UNDO even if no data changes have been
made. With RECOVERY ON, only changes made after (and including) the first
change to edit data can be undone.

Note: Changes made by initial edit macros cannot be undone.

See “Understanding Differences in SETUNDO Processing” on page 72 for more
information on the differences between SETUNDO RECOVER and SETUNDO
STORAGE processing.

Each time you press Enter, an interaction occurs between you and the PDF
component. If you combine line and primary commands in one entry, the PDF
component considers this one interaction. Therefore, UNDO would cause all of the
commands to be reversed. The PDF component also considers running edit macros
that contain a combination of macro commands and assignment statements, while
entering a combination of edit line and primary commands at the same time, as
one interaction.

Profile changes, such as HEX ON, LEVEL, and CAPS, cannot be undone separately.
Profile changes are associated with the data change that came before them, and can
be undone only when preceded by a data change. The data change and the profile
change are undone at the same time. For example, if you make a change to the
data, change the version number, set caps off, turn hex on, and then enter UNDO,

TABS

290 z/OS V1R2.0 ISPF Edit and Edit Macros

the version number, caps setting, and hex mode all revert to the way they existed
before the data change. The data change is also undone.

Note: UNDO is not accepted if any line commands or data changes are also
specified since it would be unclear what is to be undone.

To undo the last changes:
1. Type on the Command line:

Command ===> UNDO

2. Press Enter.

Note: UNDO is reset by SAVE. Once you save your data for the current edit
session, you can no longer recover any interactions made before the data
was saved.

Failures in recovery processing due to I/O errors no longer terminate the UNDO
function if SETUNDO STORAGE is active. When UNDO is processed, the editor
scrolls the data all the way to the left.

See “Undoing Edit Interactions” on page 71 for more information.

Example
You are editing the member shown in Figure 157 and decide to delete all of the
lines. You have type the block form of the D (DELETE) command in the line
command area.

Figure 158 shows the member after the lines have been deleted. However, you
have changed your mind and want to put the lines back again. Therefore, type
UNDO on the Command line.

Figure 157. Member Before Lines Are Deleted

UNDO

Chapter 10. Edit Primary Commands 291

Figure 159 shows the member after UNDO has been entered and the deleted lines
have been restored.

UNNUMBER—Remove Sequence Numbers
The UNNUMBER primary command sets all sequence fields to blanks, turns off
number mode, and positions the data so that column 1 is the first column
displayed.

Figure 158. Member After Lines Are Deleted

Figure 159. Member After Lines Have Been Restored

UNDO

292 z/OS V1R2.0 ISPF Edit and Edit Macros

Syntax
UNNUMBER

Description
UNNUMBER is valid only when number mode is also on. The standard sequence
field, the COBOL sequence field, or both, are blanked out. If you alter or delete
sequence numbers and enter UNNUMBER on the Command line at the same time,
the editor issues the message Some input data ignored and discards the data you
typed over the sequence numbers.

To set all sequence fields to blanks, turn number mode off, and position the panel
so that column 1 is the first column to appear:
Command ===> UNNUMBER

Example
You are editing the member in Figure 160 and you want to turn off the sequence
numbers. Enter UNNUMBER on the Command line.

Figure 161 shows the member after the sequence numbers have been turned off.

Figure 160. Member Before Lines Are Unnumbered

UNNUMBER

Chapter 10. Edit Primary Commands 293

VERSION—Control the Version Number
The VERSION primary command allows you to change the version number
assigned to a member of an ISPF library.

Syntax
VERSION num

num The version number. It can be any number from 1 to 99.

Description
To change the version number of the member that you are editing:
1. On the Command line, type:

Command ===> VERSION num

where num is the new version number.
2. Press Enter.

See “Version and Modification Level Numbers” on page 29, for more information
about version numbers.

Example
Version and modification level numbers are shown on the first line of an edit data
display in the format VV.MM, where VV is the version number and MM is the
modification level number.

You are editing the member shown in Figure 162 and you want to change the
version number from 01 to 02. Enter VERSION on the Command line.

Figure 161. Member After Lines Are Unnumbered

VERSION

294 z/OS V1R2.0 ISPF Edit and Edit Macros

Figure 163 shows the member with the changed version number.

VIEW—View from within an Edit Session
The VIEW primary command allows you to view a sequential data set or
partitioned data set member during your current edit session.

Figure 162. Member Before Version Number is Changed

Figure 163. Member After Version Number is Changed

VERSION

Chapter 10. Edit Primary Commands 295

Syntax
VIEW [member]

member
A member of the ISPF library or other partitioned data set you are
currently editing. You may enter a member pattern to generate a member
list.

Description
To view a data set or member during your current edit session:
1. On the Command line, type:

Command ===> VIEW member

Here, member represents the name of the partitioned data set you are editing.
The member operand is optional.

2. Press Enter. If you specified a member name, the current library concatenation
sequence finds the member. The member is displayed for viewing. If you do
not specify a member name, the View Command Entry panel, which is similar
to the regular View Entry panel, appears. You can enter the name of any
sequential or partitioned data set to which you have access. When you press
Enter, the data set or member is displayed for viewing. The editor suspends
your initial edit session until the view session is complete. Viewing sessions can
be nested until you run out of storage.

3. To exit from the view session, enter the END command. The current edit
session resumes.

Example
To view member YYY of the current library concatenation:
1. On the Command line, type:

Command ===> VIEW YYY

2. Press enter.

VIEW

296 z/OS V1R2.0 ISPF Edit and Edit Macros

Chapter 11. Edit Macro Commands and Assignment
Statements

This chapter documents general-use programming interfaces and associated
guidance information.

This chapter describes the edit macro commands and assignment statements
available for the PDF component. Edit macro commands and assignment
statements must be included in edit macros that you create.

Macro commands and assignment statements cannot be entered individually from
the edit command line. However, once you have created an edit macro, you can
use the macro just like any other Edit primary command. You can run an edit
macro by:
v Typing the macro name on the Command line and pressing Enter
v Pressing a function key to which the macro has been assigned, if any.

Note: Edit macro commands should not be confused with TSO commands.
Although both are programs, edit macros must not be prefixed with the
word ’TSO’ when they are invoked.

All edit macros must have an ISREDIT MACRO statement as the first edit
command. For more information see “Macro Command Syntax” on page 360.

Each command description in this book consists of the following information:

Syntax
A syntax diagram for coding the macro command, including a description
of any required or optional operands.

Description
An explanation of the function and operation of the command. This
description also refers to other commands that can be used with this
command.

Return Codes
A description of codes returned by the macro command. For all
commands, a return code of 20 or higher implies a severe error. See
“Return Codes from User-Written Edit Macros” on page 116 and “Return
Codes from PDF Edit Macro Commands” on page 117 for more
information.

Examples
Sample usage of the macro command.

Edit Macro Command Notation Conventions
The descriptions of the syntax of the the PDF component macro commands and
assignment statements use the following notation conventions:

Uppercase
Uppercase commands or operands must be spelled as shown (in either
uppercase or lowercase).

© Copyright IBM Corp. 1984, 2001 297

Lowercase
Lowercase operands are variables; substitute your own values.

Underscore
Underscored operands are the system defaults.

Brackets ([])
Operands in brackets are optional.

Stacked operands
Stacked operands show two or more operands from which you can select.
If you do not choose any, the PDF component uses the default operand.

Braces ({ })
Braces show two or more operands from which you must select one.

OR (|)
The OR (|) symbol shows two or more operands from which you must
select one.

Edit Macro Command Summary
The following table summarizes the edit macro commands. See the complete
description of the commands on the referenced page.

Table 6. Summary of the Macro Commands

Command Syntax page Description

ISREDIT AUTOLIST [ON]
[OFF]

ISREDIT (varname) = AUTOLIST
ISREDIT AUTOLIST = [ON]

[OFF]

“AUTOLIST—Set or Query
Autolist Mode” on page 306

Sets the current autolist mode or
retrieves the value and places it
in a variable.

ISREDIT AUTONUM [ON]
[OFF]

ISREDIT (varname) = AUTONUM
ISREDIT AUTONUM = [ON]

[OFF]

“AUTONUM—Set or Query
Autonum Mode” on page 307

Sets the current autonum mode
or retrieves the value and places
it in a variable.

ISREDIT AUTOSAVE [ON]
[OFF PROMPT]
[OFF NOPROMPT]

ISREDIT (var1,var2) = AUTOSAVE
ISREDIT AUTOSAVE = [ON]

[OFF PROMPT]
[OFF NOPROMPT]

“AUTOSAVE—Set or Query
Autosave Mode” on page 308

Sets the current autosave mode or
retrieves the value and places it
in a variable.

ISREDIT (varname) = BLKSIZE “BLKSIZE—Query the Block
Size” on page 309

Returns the block size of the data
set being edited in a specified
variable.

ISREDIT BOUNDS [left-col right-col]
ISREDIT (var1,var2) = BOUNDS
ISREDIT BOUNDS = [left-col right-col]

“BOUNDS—Set or Query the
Edit Boundaries” on page 310

Sets the left and right boundaries
or retrieves the values and places
them in variables.

ISREDIT BROWSE member “BROWSE—Browse from within
an Edit Session” on page 312

Browses another member in the
data set.

ISREDIT BUILTIN cmdname “BUILTIN—Process a Built-In
Command” on page 312

Processes a built-in command
even if a macro or macro
statement with the same name
has been defined.

ISREDIT CANCEL “CANCEL—Cancel Edit
Changes” on page 313

Ends the edit session without
saving any changes.

Edit Macro Command Notation Conventions

298 z/OS V1R2.0 ISPF Edit and Edit Macros

Table 6. Summary of the Macro Commands (continued)

Command Syntax page Description

ISREDIT CAPS [ON]
[OFF]

ISREDIT (varname) = CAPS
ISREDIT CAPS = [ON]

[OFF]

“CAPS—Set or Query Caps
Mode” on page 314

Sets caps mode.

ISREDIT CHANGE string-1 string-2 [label-range] [NEXT] [CHARS] [X] [col-1 [col-2]]
[ALL] [PREFIX] [NX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

“CHANGE—Change a Search
String” on page 315

Changes a data string to another
string.

ISREDIT (var1,var2) = CHANGE_COUNTS “CHANGE_COUNTS—Query
Change Counts” on page 317

Retrieves the values set by the
most recently processed
CHANGE command and places
these values in variables.

ISREDIT COMPARE {dsname|NEXT|SESSION|*}
[{EXCLUDE}
{SAVE}
{SYSIN}]

“COMPARE—Edit Compare” on
page 318

Compares a library member or
data set with the data being
edited.

ISREDIT COPY member {AFTER } lptr [linenum-range]
(member) {BEFORE}

dataset name

“COPY—Copy Data” on page 321 Copies a member of the library
into the member being edited.

ISREDIT CREATE member lptr-range
(member) {range }
dataset(member) {range }

“CREATE—Create a Data Set or a
Data Set Member” on page 322

Creates a new member from the
data that is being edited.

ISREDIT (var1,var2) = CURSOR
ISREDIT CURSOR = lptr [col]

“CURSOR—Set or Query the
Cursor Position” on page 322

Sets the relative line and column
number of the cursor or retrieves
the values and places them in
variables.

ISREDIT CUT [lptr-range]
[DEFAULT | clipboardname]
[REPLACE|APPEND]

“CUT—Cut and Save Lines” on
page 325

Cut and save lines.

ISREDIT (varname) = DATA_CHANGED “DATA_CHANGED—Query the
Data Changed Status” on
page 326

Retrieves the data changed status
and places it in a variable.

ISREDIT (varname) = DATA_WIDTH “DATA_WIDTH—Query Data
Width” on page 326

Retrieves the logical data width
and places it in a variable.

ISREDIT (varname) = DATAID “DATAID—Query Data ID” on
page 327

Retrieves the data ID for the data
set being edited and places it in a
variable.

ISREDIT (var1,var2,var3) = DATASET “DATASET—Query the Current
and Original Data Set Names” on
page 328

Retrieves the name of a data set
and places it in a variable.

ISREDIT DEFINE name {MACRO CMD }
{MACRO PGM }
{ALIAS name-2}
{NOP }
{RESET }
{DISABLED }

“DEFINE—Define a Name” on
page 329

v Assigns an alias to a macro or
built-in command.

v Disables the use of a macro or
built-in command.

v Identifies a macro that replaces
a built-in command of the
same name.

v Identifies programs that are
edit macros.

Edit Macro Command Summary

Chapter 11. Edit Macro Commands and Assignment Statements 299

Table 6. Summary of the Macro Commands (continued)

Command Syntax page Description

ISREDIT DELETE { ALL X | NX [lptr-range]}
{[ALL] X | NX lptr-range }
{lptr }
{lptr-range }

“DELETE—Delete Lines” on
page 330

Deletes lines from the data.

ISREDIT (var1,var2) = DISPLAY_COLS “DISPLAY_COLS—Query Display
Columns” on page 331

Retrieves the column numbers for
the first and last data columns on
the panel and places them in
variables.

ISREDIT (var1,var2) = DISPLAY_LINES “DISPLAY_LINES—Query
Display Lines” on page 332

Retrieves the relative line
numbers of the first and last data
lines that would appear if the
macro ended and places them in
variables.

ISREDIT DOWN amt “DOWN—Scroll Down” on
page 333

Scrolls data down from the
current panel position.

ISREDIT EDIT member “EDIT—Edit from within an Edit
Session” on page 334

Edits another member in the data
set (recursive editing).

ISREDIT END “END—End the Edit Session” on
page 335

Ends the edit session.

ISREDIT EXCLUDE string [label-range] [NEXT] [CHARS] [col-1 [col-2]]
[ALL] [PREFIX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

“EXCLUDE—Exclude Lines from
the Display” on page 336

Marks lines in the data that
should not appear.

ISREDIT (var1,var2) = EXCLUDE_COUNTS “EXCLUDE_COUNTS—Query
Exclude Counts” on page 338

Retrieves the values set by the
most recently processed
EXCLUDE command and places
them in variables.

ISREDIT FIND string [label-range] [NEXT] [CHARS] [X] [col-1 [col-2]]
[ALL] [PREFIX] [NX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

“FIND—Find a Search String” on
page 338

Locates a search string. It is
recommended that you do not
use FIND in a macro because any
excluded data string found is
shown on the panel. Use SEEK to
perform the identical function
without changing the lines’
exclude status.

ISREDIT (var1,var2) = FIND_COUNTS “FIND_COUNTS—Query Find
Counts” on page 340

Retrieves values set by the most
recently processed FIND or
RFIND command and places
them in variables.

ISREDIT FLIP [label-range] “FLIP—Reverse Exclude Status of
Lines” on page 341

Reverses the exclude status of a
specified group of lines in a file
or of all the lines in a file.

ISREDIT (var1,var2) = FLOW_COUNTS “FLOW_COUNTS—Query Flow
Counts” on page 342

Retrieves values set by the most
recently processed TFLOW
command and places them in
variables.

ISREDIT HEX [ON DATA]
[ON VERT]
[OFF]

ISREDIT (var1,var2) = HEX
ISREDIT HEX = [ON DATA]

[ON VERT]
[OFF]

“HEX—Set or Query
Hexadecimal Mode” on page 342

Sets the hexadecimal mode or
retrieves the value and places it
in a variable.

Edit Macro Command Summary

300 z/OS V1R2.0 ISPF Edit and Edit Macros

Table 6. Summary of the Macro Commands (continued)

Command Syntax page Description

ISREDIT HILITE [ON] [AUTO] [RESET] [PAREN] [FIND] [CURSOR]
[SEARCH] [DISABLED]

[OFF] [DEFAULT]
[LOGIC] [OTHER]
[IFLOGIC] [ASM]
[DOLOGIC] [BOOK]
[NOLOGIC] [C]

[COBOL]
[DTL]
[JCL]
[PANEL]
[PASCAL]
[PLI]
[REXX]
[SKEL]

“HILITE—Enhanced Edit
Coloring” on page 344

Highlights, in user-specified
colors, numerous
language-specific constructs,
program logic features, the
phrase containing the cursor, and
any strings that match the
previous FIND operation or those
that would be found by an
RFIND or RCHANGE request.
Can also be used to set default
colors for the data area in
non-program files and for any
characters typed since the
previous Enter or function key
entry.

ISREDIT IMACRO {name | NONE}
ISREDIT (varname) = IMACRO
ISREDIT IMACRO = {name | NONE}

“IMACRO—Set or Query an
Initial Macro” on page 347

Sets or retrieves the value for the
initial macro in the profile and
places it in a variable.

ISREDIT INSERT lptr [numlines] “INSERT—Prepare Display for
Data Insertion” on page 348

Displays one or more lines for
data entry.

ISREDIT (var1,var2) = LABEL lptr
ISREDIT LABEL lptr = labelname [level]

“LABEL—Set or Query a Line
Label” on page 348

Sets or retrieves the values for the
label on the specified line and
places them in variables.

ISREDIT LEFT amt “LEFT—Scroll Left” on page 349 Scrolls data left from the current
panel position.

ISREDIT LEVEL num
ISREDIT (varname) = LEVEL
ISREDIT LEVEL = num

“LEVEL—Set or Query the
Modification Level Number” on
page 350

Sets the modification level
number or retrieves the value
and places it in a variable.

ISREDIT (varname) = LINE lptr
ISREDIT LINE lptr = data

“LINE—Set or Query a Line from
the Data Set” on page 351

Sets or retrieves the data from the
data line and places it in a
variable.

ISREDIT LINE_AFTER lptr = [DATALINE] data
[INFOLINE]
[MSGLINE]
[NOTELINE]

“LINE_AFTER—Add a Line to
the Current Data Set” on page 352

Adds a line after the specified
line.

ISREDIT LINE_BEFORE lptr = [DATALINE] data
[INFOLINE]
[MSGLINE]
[NOTELINE]

“LINE_BEFORE—Add a Line to
the Current Data Set” on page 354

Adds a line before the specified
line.

ISREDIT (varname) = LINE_STATUS lptr “LINE_STATUS—Query Source
and Change Information for a
Line in a Data Set” on page 355

Retrieves source and change
information for a specified data
line.

ISREDIT (varname) = LINENUM label “LINENUM—Query the Line
Number of a Labeled Line” on
page 357

Retrieves the relative line number
of a specified label and places it
in a variable.

Edit Macro Command Summary

Chapter 11. Edit Macro Commands and Assignment Statements 301

Table 6. Summary of the Macro Commands (continued)

Command Syntax page Description

ISREDIT LOCATE lptr
ISREDIT LOCATE [FIRST] {CHANGE }
[lptr-range]

[LAST] {COMMAND }
[NEXT] {ERROR }
[PREV] {EXCLUDED}

{LABEL }
{SPECIAL }
{INFOLINE }
{MSGLINE}
{NOTELINE}

“LOCATE—Locate a Line” on
page 357

Locates a line.

ISREDIT (varname) = LRECL “LRECL—Query the Logical
Record Length” on page 359

Returns the logical record length
of the data being edited in a
variable.

ISREDIT MACRO [(var1 [,var2,...])] [PROCESS]
[NOPROCESS]

“MACRO—Identify an Edit
Macro” on page 360

Identifies a command as a macro.
MACRO is required for all
macros and must be the first
command in a CLIST or REXX
EXEC macro that is not a CLIST
or REXX EXEC statement or the
first edit command in a program
macro.

ISREDIT (varname) = MACRO_LEVEL “MACRO_LEVEL—Query the
Macro Nesting Level” on
page 361

Retrieves the nesting level of the
macro being run and places it in
a variable.

ISREDIT (varname) = MASKLINE
ISREDIT MASKLINE = data

“MASKLINE—Set or Query the
Mask Line” on page 362

Sets or retrieves the value of the
mask line, which controls the
display formatting of input.

ISREDIT (varname) = MEMBER “MEMBER—Query the Current
Member Name” on page 363

Retrieves the name of the ISPF
library member currently being
edited and places it in a variable.

ISREDIT MEND “MEND—End a Macro in the
Batch Environment” on page 363

Ends a macro that is running in
the batch environment. MEND is
obsolete.

ISREDIT MODEL model-name [qualifier] {AFTER }
{BEFORE}

lptr [NOTES][NONOTES]
ISREDIT MODEL CLASS class-name

“MODEL—Copy a Model into
the Current Data Set” on page 363

Copies a specified dialog
development model before or
after a specified line.

ISREDIT MOVE member {AFTER } lptr
(member){BEFORE}
data set name
data.set.name(member)

“MOVE— Move a Data Set or a
Data Set Member” on page 365

Moves a member of a data set
and places it after or before the
line specified.

ISREDIT NONUMBER “NONUMBER—Turn Off
Number Mode” on page 366

Turns off number mode.

ISREDIT NOTES [ON]
[OFF]

ISREDIT (varname) = NOTES
ISREDIT NOTES = [ON]

[OFF]

“NOTES—Set or Query Note
Mode” on page 366

Sets the current note mode or
retrieves the value and places it
in a variable.

Edit Macro Command Summary

302 z/OS V1R2.0 ISPF Edit and Edit Macros

Table 6. Summary of the Macro Commands (continued)

Command Syntax page Description

ISREDIT NULLS [ON STD]
[ON ALL]
[OFF]

ISREDIT (var1,var2) = NULLS
ISREDIT NULLS = [ON STD]

[ON ALL]
[OFF]

“NULLS—Set or Query Nulls
Mode” on page 367

Sets the current nulls mode or
retrieves the value and places it
in a variable.

ISREDIT NUMBER [ON] [STD] [DISPLAY]
[OFF] [COBOL]

[STD COBOL]
[NOSTD]
[NOCOBOL]
[NOSTD NOCOBOL]

ISREDIT (var1,var2) = NUMBER
ISREDIT NUMBER = [ON] [STD] [DISPLAY]

[OFF] [COBOL]
[STD COBOL]

[NOSTD]
[NOCOBOL]
[NOSTD NOCOBOL]

“NUMBER—Set or Query
Number Mode” on page 368

Sets the current number mode or
retrieves the value and places it
in a variable.

ISREDIT PACK [ON]
[OFF]

ISREDIT (varname) = PACK
ISREDIT PACK = [ON]

[OFF]

“PACK—Set or Query Pack
Mode” on page 371

Sets the current pack mode or
retrieves the value and places it
in a variable.

ISREDIT PASTE [AFTER] lptr [clipboardname]
[BEFORE][KEEP]

“PASTE—Move or Copy Lines
from Clipboard” on page 372

Move or copy lines from a
clipboard.

ISREDIT PRESERVE [ON]
[OFF]

ISREDIT (varname) = PRESERVE
ISREDIT PRESERVE = [ON]

[OFF]

“PRESERVE—Enable Saving of
Trailing Blanks” on page 373

Sets the current pack mode or
retrieves the value and places it
in a variable.

ISREDIT PROCESS [DEST] [RANGE cmd1 [cmd2]] “PROCESS—Process Line
Commands” on page 374

Controls when the line
commands or data changes typed
at the keyboard are to be
processed.

ISREDIT PROFILE [name] [number]
ISREDIT PROFILE {LOCK | UNLOCK}
ISREDIT RESET
ISREDIT (var1,var2) = PROFILE

“PROFILE—Set or Query the
Current Profile” on page 375

Allows you to view or change the
default modes for your edit
session.

ISREDIT (varname) = RANGE_CMD “RANGE_CMD—Query a
Command That You Entered” on
page 377

Identifies the name of a line
command typed at the keyboard
and processed by a macro.

ISREDIT RCHANGE “RCHANGE—Repeat a Change”
on page 378

Repeats the most recently
processed CHANGE command.

ISREDIT (varname) = RECFM “RECFM—Query the Record
Format” on page 378

Retrieves the record format of the
data set being edited and places
the value in variables.

Edit Macro Command Summary

Chapter 11. Edit Macro Commands and Assignment Statements 303

Table 6. Summary of the Macro Commands (continued)

Command Syntax page Description

ISREDIT RECOVERY [ON]
[OFF [WARN]]
[OFF NOWARN]

ISREDIT (varname) = RECOVERY
ISREDIT RECOVERY = [ON [SUSP]]

[OFF [WARN]]
[OFF NOWARN]

“RECOVERY—Set or Query
Recovery Mode” on page 379

Sets the recovery mode or
retrieves the value and places it
in a variable.

ISREDIT RENUM [ON] [STD] [DISPLAY]
[COBOL]
[STD COBOL]

“RENUM—Renumber Data Set
Lines” on page 380

Sets number mode on and
renumbers all data lines.

ISREDIT REPLACE member lptr-range
ISREDIT REPLACE (member) lptr-range
ISREDIT REPLACE dataset lptr-range
ISREDIT REPLACE dataset(member) lptr-range

“REPLACE—Replace a Data Set
or Data Set Member” on page 382

Replaces the specified member in
the library with the data specified
in the member being edited.

ISREDIT RESET [CHANGE] [lptr-range]
[COMMAND]
[ERROR]
[EXCLUDED]
[FIND]
[LABEL]
[SPECIAL]

“RESET—Reset the Data Display”
on page 382

Restores the status of lines or
deletes special temporary lines.

ISREDIT RFIND “RFIND—Repeat Find” on
page 384

Locates the data string defined by
the most recently processed
SEEK, FIND, or CHANGE
command, or excludes a line that
contains the data string from the
previous EXCLUDE command.

ISREDIT RIGHT amt “RIGHT—Scroll Right” on
page 385

Scrolls data to the right of the
current panel position.

ISREDIT RMACRO {name | NONE}
ISREDIT (varname) = RMACRO
ISREDIT RMACRO = {name | NONE}

“RMACRO—Set or Query the
Recovery Macro” on page 385

Sets or retrieves the name of the
macro set in this edit session.

ISREDIT SAVE “SAVE—Save the Current Data”
on page 386

Saves the data.

ISREDIT (varname) = SAVE_LENGTH .lptr
ISREDIT SAVE_LENGTH .lptr = value

“SAVE_LENGTH—Set or Query
Length for Variable Length Data”
on page 387

Sets or queries the length to be
used to save each record in a
variable length file.

ISREDIT SCAN [ON]
[OFF]

ISREDIT (varname) = SCAN
ISREDIT SCAN = [ON]

[OFF]

“SCAN—Set Command Scan
Mode” on page 388

Sets the current value of scan
mode (for variable substitution)
or retrieves the value and places
it in a variable.

ISREDIT SEEK string [label-range] [NEXT] [CHARS] [X] [col-1 [col-2]]
[ALL] [PREFIX] [NX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

“SEEK—Seek a Data String,
Positioning the Cursor” on
page 389

Finds one or more occurrences of
a data string. SEEK is similar to
FIND; however, when a string is
found, the exclude status of the
line is not affected.

ISREDIT (var1,var2) = SEEK_COUNTS “SEEK_COUNTS—Query Seek
Counts” on page 391

Retrieves the values set by the
most recently processed SEEK
command and places them in
variables.

Edit Macro Command Summary

304 z/OS V1R2.0 ISPF Edit and Edit Macros

Table 6. Summary of the Macro Commands (continued)

Command Syntax page Description

ISREDIT (var1,var2) = SEEK_COUNTS “SEEK_COUNTS—Query Seek
Counts” on page 391

Retrieves the values set by the
most recently processed SEEK
command and places them in
variables.

ISREDIT (var1,var2) = SESSION “SESSION—Query Session Type”
on page 391

Identifies the type of session in
which the macro is running

ISREDIT SHIFT (lptr [n]
[2]

“SHIFT (—Shift Columns Left” on
page 393

Moves columns of data to the
left.

ISREDIT SHIFT) lptr [n]
[2]

“SHIFT)—Shift Columns Right”
on page 394

Moves columns of data to the
right.

ISREDIT SHIFT < lptr [n]
[2]

“SHIFT <—Shift Data Left” on
page 395

Moves data to the left.

ISREDIT SHIFT > lptr [n]
[2]

“SHIFT >—Shift Data Right” on
page 395

Moves data to the right.

ISREDIT SORT [label-range] [X] [sort-field1 ... sort-field5]
[NX]

“SORT—Sort Data” on page 396 Puts data in a specified order.

ISREDIT STATS [ON]
[OFF]

ISREDIT (varname) = STATS
ISREDIT STATS = [ON]

[OFF]

“STATS—Set or Query Stats
Mode” on page 398

Sets the current stats mode or
retrieves the value and places it
in a variable.

ISREDIT SUBMIT [lptr-range] “SUBMIT—Submit Data for Batch
Processing” on page 399

Submits data that is to be
processed as a batch job.

ISREDIT TABS [ON] [STD]
[OFF] [ALL]

[tab-character]
ISREDIT (var1,var2) = TABS
ISREDIT TABS = [ON] [STD]

[OFF] [ALL]
[tab-character]

“TABS—Set or Query Tabs
Mode” on page 399

Sets the tabs mode or retrieves
the mode and places it in a
variable.

ISREDIT (varname) = TABSLINE
ISREDIT TABSLINE = data

“TABSLINE—Set or Query Tabs
Line” on page 401

Sets the tabs line or retrieves the
tabs line and places it in a
variable.

ISREDIT TENTER lptr [numlines] “TENTER—Set Up Panel for Text
Entry” on page 402

Prepares the panel for power
typing.

ISREDIT TFLOW lptr [col] “TFLOW—Text Flow a
Paragraph” on page 404

Restructures paragraphs.

ISREDIT TSPLIT [lptr col] “TSPLIT—Text Split a Line” on
page 404

Divides a line so data can be
added.

ISREDIT UNNUMBER “UNNUMBER—Remove
Sequence Numbers” on page 405

Removes the numbers from the
data set and turns number mode
off.

ISREDIT UP amt “UP—Scroll Up” on page 406 Scrolls data up from the current
panel position.

ISREDIT (varname) = USER_STATE
ISREDIT USER_STATE = (varname)

“USER_STATE—Save or Restore
User State” on page 407

Saves or restores the state of the
edit profile values, FIND and
CHANGE values, and panel and
cursor values.

Edit Macro Command Summary

Chapter 11. Edit Macro Commands and Assignment Statements 305

Table 6. Summary of the Macro Commands (continued)

Command Syntax page Description

ISREDIT (varname) = VERSION
ISREDIT VERSION = num
ISREDIT VERSION num

“VERSION—Set or Query Version
Number” on page 408

Sets the version number or
retrieves the value and places it
in a variable.

ISREDIT VIEW member “VIEW—View from within an
Edit Session” on page 409

Views another member in the
data set.

ISREDIT (var1,var2) = VOLUME “VOLUME—Query Volume
Information” on page 409

Retrieves the volume serial
number (or serial numbers) and
the number of volumes on which
the data set resides.

ISREDIT (varname) = XSTATUS lptr
ISREDIT XSTATUS lptr = X | NX

“XSTATUS—Set or Query
Exclude Status of a Line” on
page 410

Sets the exclude status of the
specified data line or retrieves the
value and places it in a variable.

AUTOLIST—Set or Query Autolist Mode
The AUTOLIST macro command sets autolist mode, which controls the automatic
printing of data to the ISPF list data set.

The AUTOLIST assignment statement either sets autolist mode or retrieves the
current setting of autolist mode and places it in a variable.

Autolist mode is saved in the edit profile.

Macro Command Syntax
ISREDIT AUTOLIST [ON]

[OFF]

ON Specifies that when you end an edit session and save changed data, the
editor generates a source listing in the ISPF list data set for eventual
printing.

OFF Does not generate a source listing.

Assignment Statement Syntax
ISREDIT (varname) = AUTOLIST
ISREDIT AUTOLIST = [ON]

[OFF]

varname
The name of a variable that contains the setting of autolist mode, either
ON or OFF.

ON Same as macro command syntax.

OFF Same as macro command syntax.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Edit Macro Command Summary

306 z/OS V1R2.0 ISPF Edit and Edit Macros

Examples
To turn autolist mode on:
ISREDIT AUTOLIST ON

or
ISREDIT AUTOLIST = ON

To turn autolist mode off:
ISREDIT AUTOLIST OFF

or
ISREDIT AUTOLIST = OFF

AUTONUM—Set or Query Autonum Mode
The AUTONUM macro command sets autonum mode, which controls the
automatic renumbering of data when it is saved.

The AUTONUM assignment statement either sets autonum mode or retrieves the
current setting of autonum mode and places it in a variable.

Macro Command Syntax
ISREDIT AUTONUM [ON]

[OFF]

ON Turns on automatic renumbering. When number mode is also on, the data
is automatically renumbered when it is saved.

OFF Turns off automatic renumbering. Data is not renumbered.

Assignment Statement Syntax
ISREDIT (varname) = AUTONUM
ISREDIT AUTONUM = [ON]

[OFF]

varname
The name of a variable containing the setting of autonum mode, either ON
or OFF.

ON Same as macro command syntax.

OFF Same as macro command syntax.

Description
When number mode is on, the first line of a data set or member is normally line
number 000100, the second number is 000200, and so on. However, as lines are
inserted and deleted, the increments between line numbers can change.

For example, you might think that when a line is inserted between 000100 and
000200, line 000200 would be given the number 000300 and the new line would
become 000200. Instead, the existing lines retain their numbers and the new line is
given line number 000110.

Therefore, if the original line number increments are important to you, AUTONUM
renumbers your lines automatically so that the original increments are maintained.

AUTOLIST

Chapter 11. Edit Macro Commands and Assignment Statements 307

Autonum mode is saved in the edit profile.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Examples
To turn autonum mode on:
ISREDIT AUTONUM ON

or
ISREDIT AUTONUM = ON

To turn autonum mode off:
ISREDIT AUTONUM OFF

or
ISREDIT AUTONUM = OFF

AUTOSAVE—Set or Query Autosave Mode
The AUTOSAVE macro command sets autosave mode, which controls whether
changed data is saved when you issue the END command.

The AUTOSAVE assignment statement either sets autosave mode, or retrieves the
current setting of autosave mode and places it in variables.

Macro Command Syntax
ISREDIT AUTOSAVE [ON]

[OFF PROMPT]
[OFF NOPROMPT]

ON Turns autosave mode on. When you enter END, any changed data is
saved.

OFF PROMPT
Turns autosave mode off with the PROMPT operand. You are notified that
changes have been made and to use either SAVE (followed by END) or
CANCEL. If you specify only the PROMPT keyword, OFF is implied.

OFF NOPROMPT
Turns autosave mode off with the NOPROMPT operand. You are not
notified and the data is not saved when you issue an END command. END
becomes an equivalent to CANCEL. Use the NOPROMPT operand with
caution.

Assignment Statement Syntax
ISREDIT (var1,var2) = AUTOSAVE
ISREDIT AUTOSAVE = [ON]

[OFF PROMPT]
[OFF NOPROMPT]

var1 The name of a variable to contain the setting of autosave mode, either ON
or OFF.

AUTONUM

308 z/OS V1R2.0 ISPF Edit and Edit Macros

var2 The name of a variable to contain the prompt value, PROMPT or
NOPROMPT.

ON Same as macro command syntax.

OFF PROMPT
Same as macro command syntax.

OFF NOPROMPT
Same as macro command syntax.

Description
Data is considered changed if you have operated on it in any way that could cause
a change. Shifting a blank line or changing a name to the same name does not
actually alter the data, but the editor considers this data changed. When you enter
SAVE, the editor resets the change status.

Autosave mode, along with the PROMPT operand, is saved in the edit profile.

See the DATA_CHANGED, CANCEL, and END macro commands, and the
CANCEL and END primary commands for more information on saving data.

Return Codes
The following return codes can be issued:
0 Normal completion
4 OFF NOPROMPT specified
20 Severe error.

Examples
To turn autosave mode on:
ISREDIT AUTOSAVE ON

or
ISREDIT AUTOSAVE = ON

To turn autosave mode off and have the editor prompt you to use the SAVE or
CANCEL command:
ISREDIT AUTOSAVE OFF

or
ISREDIT AUTOSAVE = OFF

To turn autosave mode off and not have the editor prompt you to use SAVE or
CANCEL::
ISREDIT AUTOSAVE OFF NOPROMPT

or
ISREDIT AUTOSAVE = OFF NOPROMPT

BLKSIZE—Query the Block Size
The BLKSIZE assignment statement returns the block size of the data being edited
in a specified variable.

AUTOSAVE

Chapter 11. Edit Macro Commands and Assignment Statements 309

Assignment Statement Syntax
ISREDIT (varname) = BLKSIZE

varname
The name of a variable to contain the block size of the data being edited.
The block size is a 6-digit value that is left-padded with zeros.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Syntax Error
20 Severe error.

Example
To find the block size and continue processing if the block size is greater than 800:
ISREDIT (BSIZE) = BLKSIZE
IF &BSIZE > 000800 THEN -

...

BOUNDS—Set or Query the Edit Boundaries
The BOUNDS macro command sets the left and right boundaries and saves them
in the edit profile.

The BOUNDS assignment statement sets or retrieves the left and right boundaries
and places the values in variables.

Macro Command Syntax
ISREDIT BOUNDS [left-col right-col]
left-col

The left boundary column to be set.
right-col

The right boundary column to be set.

Assignment Statement Syntax
ISREDIT (var1,var2) = BOUNDS
ISREDIT BOUNDS = [left-col right-col]
var1 A variable containing the left boundary. If the variable is VDEFINEd in

character format, it should be defined with a length of 5. The returned
value is left padded with zeros. For compatibility with previous releases of
ISPF, A length of 3 or 4 is allowed in cases where no data loss will occur.

var2 A variable containing the right boundary. If the variable is VDEFINEd in
character format, it should be defined with a length of 5. The returned
value is left padded with zeros. For compatibility with previous releases of
ISPF/PDF, A length of 3 or 4 is allowed in cases where no data loss will
occur.

left-col
Same as macro command syntax.

right-col
Same as macro command syntax.

BLKSIZE

310 z/OS V1R2.0 ISPF Edit and Edit Macros

Description
The BOUNDS macro command provides an alternative to setting the boundaries
with the BOUNDS line command or primary command; the effect on the member
or data set is the same.

The column numbers are always data column numbers. Thus, for a variable format
data set with number mode on, data column 1 is column 9 in the record.

See “Edit Boundaries” on page 26 for more information, including tables that show
commands affected by bounds settings and default bounds settings for various
types of data sets.

Return Codes
The following return codes can be issued:
0 Normal completion
4 Right boundary greater than default, default right boundary used
12 Invalid boundaries specified
20 Severe error.

Examples
To set the boundaries to their default values, type:
ISREDIT BOUNDS

To set one boundary while leaving the other value unchanged, type an asterisk (*)
for the boundary to be unchanged. For example, to set the left boundary from the
variable &LEFT, and leave the right boundary unchanged, type:
ISREDIT BOUNDS &LEFT *

To set the left boundary to 1, leaving the right boundary unchanged:
ISREDIT BOUNDS = 1 *

To save the value of the left boundary in the variable &LEFT:
ISREDIT (LEFT) = BOUNDS

To save the value of the right boundary in the variable &RIGHT:
ISREDIT (,RIGHT) = BOUNDS

To evaluate numbers for bounds when NUMBER COBOL is on, or NUMBER is on
for a variable blocked data set:
/* Rexx - Set physical bounds in a macro. Input is 2 column */
/* numbers and result is bounds set on that physical column */
/* regardless of number setting. Bounds will not be set */
/* within line number areas. This sample has minimal */
/* error checking. */
Address isredit
'MACRO (LEFT,RIGHT)' /* Take left and right bounds*/
'(NUMBER,COBOL) = NUMBER' /* Get number status */
Parse Var cobol . cobol . /* Get just left status */
'(RECFM) = RECFM' /* Get record format */
'(DW) = DATA_WIDTH' /* Get data width */
If left='' Then left = 1 /* Assume col 1 for left */
If right='' Then right = dw /* Assume datawidth for right*/
shift = 0 /* Assume no left seq numbers*/
If cobol='COBOL' Then /* If numbered as cobol */

shift = 6 /* Account for sequence num*/
Else If number='ON' & recfm='V' Then /* If numbered variable block*/

BOUNDS

Chapter 11. Edit Macro Commands and Assignment Statements 311

shift = 8 /* Account for sequence num*/
right = max(1,right - shift) /* Adjust right column */
right = min(right,dw) /* Adjust right column */
left = max(1,left - shift) /* Adjust left column */
left = min(left ,dw) /* Adjust left column */

'BOUNDS 'min(left,right) max(left,right) /* Issue bounds command */
'PROFILE'

BROWSE—Browse from within an Edit Session
The BROWSE macro command allows you to browse a member of the same
partitioned data set during your current edit session.

Macro Command Syntax
ISREDIT BROWSE member

member
A member of the library or other partitioned data set you are currently
editing. You may enter a member pattern to generate a member list.

Description
Your initial edit session is suspended until the browse session is complete.

To exit from the browse session, END or CANCEL must be processed by a macro
or entered by you. The current edit session resumes.

For more information on using the BROWSE service, refer to ISPF Services Guide

Return Codes
The following return codes can be issued:
0 Normal completion
12 Your error (invalid member name, recovery pending)
20 Severe error.

Examples
To browse the member OLDMEM in your current ISPF library:
ISREDIT BROWSE OLDMEM

BUILTIN—Process a Built-In Command
The BUILTIN macro command is used within an edit macro to process a built-in
edit command, even if a macro or macro statement with the same name has been
defined.

Macro Command Syntax
ISREDIT BUILTIN cmdname

cmdname
The built-in command to be processed.

BOUNDS

312 z/OS V1R2.0 ISPF Edit and Edit Macros

Description
If you create a macro named MACEND and enter a DEFINE END ALIAS
MACEND command, your MACEND macro runs when you enter END. Within
the MACEND macro you can perform logic and use a built-in END command to
actually end the edit session.

Note that if END is issued in your MACEND macro without being preceded by
BUILTIN, the MACEND macro would run again, resulting in an infinite loop.

Return Codes
The following return codes can be issued:
n Return code from the built-in command
20 Severe error.

Examples
To process the built-in END command:
ISREDIT BUILTIN END

To process the built-in CHANGE command:
ISREDIT BUILTIN CHANGE ALL " " "-"

CANCEL—Cancel Edit Changes
The CANCEL macro command ends your edit session without saving any of the
changes you have made.

Macro Command Syntax
ISREDIT CANCEL

Description
CANCEL is especially useful if you have changed the wrong data, or if the
changes themselves are incorrect. See the DATA_CHANGED, AUTOSAVE, and
END commands for more information about saving data.

Notes:

1. If you issue SAVE and later issue CANCEL, the changes you made before
issuing SAVE are not canceled.

2. When CANCEL is entered in the macro field in the edit prompt panel
(ISRUEDIT), the macro name is not saved in the profile for use in future
sessions. This is to avoid having the editor appear to do nothing when it is
invoked from the data set list.

CANCEL does not cause automatic recording in the ISPF list data set, regardless of
the setting of the autolist mode.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

BUILTIN

Chapter 11. Edit Macro Commands and Assignment Statements 313

|
|
|
|

Example
To cancel the current edit session:
ISREDIT CANCEL

CAPS—Set or Query Caps Mode
The CAPS macro command sets caps mode, which controls whether alphabetic
data that you type at the terminal is automatically converted to uppercase during
edit operations.

The CAPS assignment statement either sets caps mode or retrieves the setting of
caps mode and places it in a variable.

Macro Command Syntax
ISREDIT CAPS [ON]

[OFF]

ON Turns caps mode on.

OFF Turns caps mode off.

Assignment Statement Syntax
ISREDIT (varname) = CAPS
ISREDIT CAPS = [ON]

[OFF]

varname
The name of a variable containing the setting of caps mode, either ON or
OFF.

ON Same as macro command syntax.

OFF Same as macro command syntax.

Description
When the editor retrieves data, it sets the caps mode on if the data contains all
uppercase letters, or off if the data contains lowercase letters. The editor displays a
message when the caps mode changes.

Caps mode is saved in the edit profile. To override the automatic setting of caps
mode, you can include the CAPS command in an initial macro.

Caps mode is normally on for program development work. When caps mode is set
to on, any alphabetic data that you type, plus any other alphabetic data that
already exists on that line, is converted to uppercase when you press Enter or a
function key.

Caps mode is normally off when you edit text documentation. When caps mode is
set to off, any alphabetic data that you type remains just as you typed it. If you
typed it in uppercase, it stays in uppercase; if you typed it in lowercase, it stays in
lowercase. Also, alphabetic data that is already typed on that line is not affected.

CAPS does not apply to DBCS fields in formatted data or to DBCS fields in mixed
fields. If you specify CAPS, the DBCS fields remain unchanged. See the LC
(lowercase) and UC (uppercase) line commands and the CAPS primary command
for more information about changing cases.

CANCEL

314 z/OS V1R2.0 ISPF Edit and Edit Macros

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Examples
To save the value of caps mode in variable &CAPMODE:
ISREDIT (CAPMODE) = CAPS

To turn caps mode OFF:
ISREDIT CAPS = OFF

To set the value of caps mode from variable &CAPMODE:
ISREDIT CAPS &CAPMODE

CHANGE—Change a Search String
The CHANGE macro command changes one search string into another.

Macro Command Syntax

string-1
The search string you want to change.

Note: For edit macros written in CLIST, strings that contain an open
comment delimiter (/*) must be placed within the &STR() delimiters
such as &STR(/*XXX). The maximum allowable length of the string
is 256 bytes. If you are specifying a hex string, the maximum is 128
hexadecimal characters.

string-2
The string you want to replace string-1. The maximum allowable length of
the string is 256 bytes. If you are specifying a hex string, the maximum is
128 hexadecimal characters.

label-range
Two labels that identify the range of lines CHANGE searches. The defaults
are the editor-defined .ZFIRST and .ZLAST labels.

When using a macro that uses NEXT or PREV with a label-range, be
careful concerning cursor placement. If the cursor is currently placed below
the label-range, and the NEXT occurence of a string is requested, the
process returns a return code of 4 and the string is not found, even if it
exists within the label-range.

If the cursor is currently placed above the label-range, and the PREV
occurence of a string is requested, the process returns a return code of 4
and the string is not found, even if it exists within the label-range.

NEXT Starts at the first position after the current cursor location and searches
ahead to find the next occurrence of string-1. NEXT is the default.

ISREDIT CHANGE string-1 string-2 [label-range] [NEXT] [CHARS] [X] [col-1 [col-2]]
[ALL] [PREFIX] [NX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

CAPS

Chapter 11. Edit Macro Commands and Assignment Statements 315

ALL Starts at the top of the data and searches ahead to find all occurrences of
string-1.

FIRST Starts at the top of the data and searches ahead to find the first occurrence
of string-1.

LAST Starts at the bottom of the data and searches backward to find the last
occurrence of string-1.

PREV Starts at the current cursor location and searches backward to find the
previous occurrence of string-1.

CHARS
Locates string-1 anywhere the characters match. CHARS is the default.

PREFIX
Locates string-1 at the beginning of a word.

SUFFIX
Locates string-1 at the end of a word.

WORD
Locates string-1 when it is delimited on both sides by blanks or other
non-alphanumeric characters.

X Scans only lines that are excluded from the display.

NX Scans only lines that are not excluded from the display.

col-1 and col-2
Numbers that identify the columns CHANGE is to search.

Description
CHANGE is often used with FIND, EXCLUDE, and SEEK, and the
CHANGE_COUNTS assignment statement.

To change the next occurrence of ME to YOU without specifying any other
qualifications, include the following command in an edit macro:
ISREDIT CHANGE ME YOU

This command changes only the next occurrence of the letters ME to YOU. Since no
other qualifications were specified, the letters ME can be:
v Uppercase or a mixture of uppercase and lowercase
v At the beginning of a word (prefix), the end of a word (suffix), or the entire

word (word)
v In an excluded line or a nonexcluded line
v Anywhere within the current boundaries.

To change the next occurrence of ME to YOU, but only if the letters are uppercase:
ISREDIT CHANGE C'ME' YOU

This type of change is called a character string change (note the C that precedes the
search string) because it changes the next occurrence of the letters ME to YOU only if
the letters are found in uppercase. However, since no other qualifications were
specified, the change occurs no matter where the letters are found, as outlined in
the preceding list.

When you would like to issue CHANGE, but you are unsure of the exclude status
of a line, you can use the XSTATUS assignment statement with SEEK. First, find

CHANGE

316 z/OS V1R2.0 ISPF Edit and Edit Macros

the particular line with SEEK. Then, determine the exclude status with the
XSTATUS assignment statement. Use CHANGE to change the string; and finally,
reset the exclude status with another XSTATUS assignment statement. For example:
ISREDIT SEEK ABC
DO WHILE &LASTCC=0

ISREDIT (X) = XSTATUS .ZCSR
ISREDIT CHANGE ABC DEF .ZCSR .ZCSR
ISREDIT XSTATUS .ZCSR = &X
ISREDIT SEEK ABC

END

For more information, including other types of search strings, see “Finding,
Seeking, Changing, and Excluding Data” on page 51.

Return Codes
The following return codes can be issued:

0 Normal completion

4 String not found

8 Change error. String-2 is longer than string-1 and substitution was not
performed on at least one change.

12 Inconsistent parameters. The string to be found does not fit between the
specified columns.

20 Severe error.

Example
Before changing the current member name, put it into a variable name such as
MEMNAME. To add an identifier to that name, if it is in columns 1 to 10 and lies
within the first line and the line labeled .XLAB:
ISREDIT (MEMNAME) = MEMBER
ISREDIT CHANGE WORD &MEMNAME "MEMBER:&MEMNAME" 1 10 .ZFIRST .XLAB

CHANGE_COUNTS—Query Change Counts
The CHANGE_COUNTS assignment statement retrieves values set by the most
recently processed CHANGE command and places these values in variables.

Assignment Statement Syntax
ISREDIT (var1,var2) = CHANGE_COUNTS

var1 The name of a variable to contain the number of strings changed. It must
be an 8-character value that is left-padded with zeros.

var2 The name of a variable to contain the number of strings that could not be
changed. It also must be an 8-character value that is left-padded with
zeros.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

CHANGE

Chapter 11. Edit Macro Commands and Assignment Statements 317

Examples
To put the number of changes resulting from the most recent CHANGE command
into the variable &CHGED:
ISREDIT (CHGED) = CHANGE_COUNTS

To put the number of change errors into variable &ERRS:
ISREDIT (,ERRS) = CHANGE_COUNTS

To put the number of changes and change errors into variables &CHG and &ERR:
ISREDIT (CHG,ERR) = CHANGE_COUNTS

COMPARE—Edit Compare
The COMPARE command compares the file you are editing with an external
sequential data set or member of a partitioned data set. Lines that exist only in the
file being edited are marked, and lines that exist only in the file being compared
are inserted as information lines in the file being edited. The command operates as
a primary command or an edit macro.

You can use the Delete and Make Data line commands to merge changes between
files that are being compared.

The COMPARE function supports all line lengths, but some SuperC options are
ignored for line lengths greater than 256 characters long.

When you are editing a cataloged data set, explicit data set names refer to
cataloged data sets. However, if you are editing an uncataloged data set, explicit
member names refer to cataloged data sets, but if you specify only a member
name, COMPARE searches for the member in the current uncataloged data set. For
example, if you are editing an uncataloged data set called ″userid.TEMP″, the
command
COMPARE TEMP

first looks for member TEMP in the current, uncataloged data set, then looks for a
cataloged data set named TEMP (TSO prefix rules apply). If it finds data set TEMP,
and the data set being edited is a PDS member, then the same named member is
searched for in data set TEMP.

Use of COMPARE when editing concatenations that contain uncataloged data sets
is not supported and can lead to unpredictable results.

If you have made changes to the data before issuing the COMPARE command, the
COMPARE command uses the current contents of the edit session during the
comparison. Because COMPARE does not require the data to be saved on disk, you
can use the COMPARE command from EDIF, VIIF, or EDIREC sessions. However,
COMPARE NEXT and COMPARE SESSION are not supported in EDIF, VIIF, or
EDIREC sessions.

Macro Command Syntax

dsname
The name of a member or data set to which the current file is compared.

ISREDIT COMPARE {dsname|NEXT|SESSION|* } [EXCLUDE][SAVE] [SYSIN]

CHANGE_COUNTS

318 z/OS V1R2.0 ISPF Edit and Edit Macros

This variable can be specified as a fully qualified data set name (in
quotation marks), a partially qualified data set name, or a member name.

If you specify only a member name, it can be preceded by a left
parenthesis symbol. The right parenthesis is allowed but not required. The
current edit session must be of a member of a partitioned data set. The
current edit concatenation is searched for the member to compare.

If you specify only a data set name and the current file is a member of a
PDS, then the specified data set is searched for a member of the same
name as the member being edited.

NEXT Specifies to do a comparison between the currently edited member and the
next member of the same name found at a higher level of the hierarchy (or
next level of the edit concatenation) than the current member. For example,
if the current member is found in the third level of the concatenation, and
a like-named member exists at the fourth level, then the third and fourth
level members are compared. After data is saved in the lowest level,
compares are done from that level upward. If you specify dsname, the
NEXT keyword cannot be used.

SESSION|*
Specifies that you want to compare the changes you have made during the
edit session with the copy of the data saved on disk. Use COMPARE
SESSION or COMPARE * to see the changes you have made to the edit
data since the beginning of the edit session or since the last SAVE
command.

EXCLUDE
Specifies that all matching lines in the compared data sets are excluded
from the display except for a specified number of lines above and below
the differences. The differences themselves are also shown in the display.
The specified number of lines that are shown is set on the Edit Compare
Settings panel. If you do not respecify the number for this edit session,
then whatever was the last number set is still valid. To change this
number, issue the COMPARE command with no operand and change the
EXCLUDE field on the Edit Compare Settings panel. Valid numbers are 0
through 12, inclusive. You cannot display the Edit Compare Settings panel
from a macro.

You can also use the COMPARE EXCLUDE command at any time to
exclude all lines in a file except lines with line labels and information lines,
and the lines above and below those lines. When you specify EXCLUDE
without a data set name or NEXT, no comparison is done. Instead the
labels and information lines that already exist in the file are used to
exclude functions. See “Compare Examples” on page 320 for a macro that
uses this technique.

SAVE Specifies that SuperC (which performs the actual compare function) create
a listing. The listing is saved in a data set named
prefix.ISPFEDIT.COMPARE.LIST. The save function is intended for
debugging purposes, but it also provides a way to create a SuperC listing.
The listing produced is a Change listing (option CHNGL). No notification
is given regarding successful creation of the listing, and errors allocating
the listing do not cause the comparison to end.

Note: Because of the way the SuperC comparison is done, the file
currently being edited is shown in the SuperC listing as the old file,
and the file to which the current file is being compared is listed as

COMPARE

Chapter 11. Edit Macro Commands and Assignment Statements 319

the new file. Therefore, insertions refer to lines that are not in the
current file, and deletions refer to lines that are only in the current
file.

SYSIN
Specifies not to free the DD name SYSIN before calling SuperC to compare
files. This enables you to pass SuperC Process Statements to alter the
comparison. No validation is done on the type of SYSIN allocation or the
contents of the data set.

Return Codes
The following return codes can be issued:

0 Normal completion

8 Member or data set not found, or an error opening the member or data set
occurred.

12 No parameters specified, or another parameter error such as not valid
NEXT or member specification.

20 Severe error. SuperC, allocation, or delta file error occurred.

Compare Examples
To compare the current file to another file called X.Y.Z and to save the SuperC
output file in ISPFEDIT.COMPARE.LIST:

ISREDIT COMPARE X.Y.Z SAVE

To compare the current file to a member in the same partitioned data set, and
exclude everything but the context in which changes exist:

ISREDIT COMPARE (memname) EXCLUDE

To find all of the occurrences of a string in a file and exclude lines to show the
context in which the strings were found, you can use the following macro:
/* Rexx - Edit macro to find a string, show only lines with the */
/* string and a few lines above and below found strings. */
/* This uses the COMPARE EXCLUDE command to perform the */
/* line exclude function. */
/* -- */
Address isredit /* */
'MACRO (PARM)' /* Accept input string */
If parm |= '' Then /* Do nothing if no parameters */

Do /* */
'RESET LABEL' /* Remove all existing labels */
'F FIRST 'parm /* Find first string occurrence */
Do While(rc=0) /* For each occurance */

'LABEL .ZCSR = 'label()' 0'/* Assign a label to line */
'RFIND' /* Find next occurance */

End /* */
'COMPARE X' /* Exclude everything except */

/* Labels and above/below lines */
'RESET LABEL' /* Remove all labels */
'(XSTAT) = XSTATUS .ZFIRST' /* Save exclude status of line 1 */
'LOCATE .ZFIRST' /* Move display to line 1 */
'XSTATUS .ZFIRST = 'xstat /* Restore line 1 exclude status */

End /* */
Exit 0 /* Always return a zero */
/* -- */
label:Procedure Expose labelnum /* Routine to generate a unique */
If datatype(labelnum,'N')=0 Then /* Edit line label */

labelnum=0 /* */

COMPARE

320 z/OS V1R2.0 ISPF Edit and Edit Macros

Else /* */
labelnum=labelnum+1 /* */

Return '.'translate(right(labelnum,4,'0'),'ABCDEFGHIJ','0123456789')

COPY—Copy Data
The COPY macro command copies any member of the ISPF library or partitioned
data set you are editing into the member you are editing.

Macro Command Syntax
ISREDIT COPY member {AFTER } lptr [linenum-range]

(member) {BEFORE}
data set name

member
A member of the ISPF library or partitioned data set that you are editing.
Either member or data set name are required parameters.

data set name
A partially or fully qualified data set name. If the data set is partitioned,
you must include a member name in parentheses. If a name of eight or
fewer characters is specified and it could be a member name or a data set
name, COPY searches for a member name first. If no member is found,
then the name is used as a data set.Either data set name or member are
required parameters.

AFTER
The destination of the data that is being copied. AFTER copies the data after
lptr.

BEFORE
The destination of the data that is being copied. BEFORE copies the data
before lptr.

lptr Indicates where the data is to be copied. A line pointer can be a label or a
relative line number. If you use a label, the label can be either a label that
you define or one of the editor-defined labels, such as .ZF or .ZL.

linenum-range
Two numbers that specify the line numbers of the member being copied.

Note: If the member name or data set name is less than 8 characters and the data
set you are editing is partitioned a like-named member is copied. If a
like-named member does not exist the name is considered to be a partially
qualified data set name.

Return Codes
The following return codes can be issued:
0 Normal completion
8 End of data reached before last record read
12 Invalid line pointer (lptr); member not found or BLDL error
16 End of data reached before first record of specified range was reached
20 Syntax error (invalid name, incomplete range), or I/O error.

Examples
To copy all of the member MEM1 at the end of the data:
ISREDIT COPY MEM1 AFTER .ZLAST

COMPARE

Chapter 11. Edit Macro Commands and Assignment Statements 321

To copy all of data set MOVECOPY.DATA before the first line of data:
ISREDIT COPY MOVECOPY.DATA BEFORE .ZFIRST

To copy the first three lines of the member MEM1 before the first line of data:
ISREDIT COPY MEM1 BEFORE .ZF 1 3

CREATE—Create a Data Set or a Data Set Member
The CREATE macro command creates a member of a partitioned data set from the
data you are editing. This command cannot be used to create a sequential data set.
Use the Data Set Utility (option 3.2) to allocate a sequential data set.

Macro Command Syntax
ISREDIT CREATE member lptr-range

(member) [range]
dataset(member) [range]

member
The name of the new member added to the partitioned data set currently
being edited. If you are using a concatenated sequence of libraries, the
member is always written to the first library in the sequence.

dataset(member)
The name of a different partitioned data set and new member to be added
to the partitioned data set. The data set name can be fully or partially
qualified.

lptr-range
Two line pointers that specify the range of lines used to create the new
member. A line pointer can be a label or a relative line number. Specifying
one line pointer is incorrect.

Description
CREATE adds a member to a partitioned data set only if a member with the same
name does not already exist. Use REPLACE if the member already exists.

Return Codes
The following return codes can be issued:
0 Normal completion
8 Member already exists, member not created
12 Invalid line pointer (lptr). The referenced line does not exist in the file.
20 Syntax error (invalid name or incomplete lptr range), or I/O error.

Example
To create a new 10-line member from the first 10 lines of the member being edited:
ISREDIT CREATE MEM1 1 10

CURSOR—Set or Query the Cursor Position
The CURSOR assignment statement sets or retrieves the column number of the
cursor location within the data and either the relative line number or label. These
values are placed in variables.

COPY

322 z/OS V1R2.0 ISPF Edit and Edit Macros

Assignment Statement Syntax
ISREDIT (var1,var2) = CURSOR
ISREDIT CURSOR = lptr [col]

var1 The name of a variable containing the line number. The line number is a
6-digit value that is left-padded with zeros. It is the ordinal number (not
the sequence number) of the line. If the variable is VDEFINEd in character
format, it should be defined with a length of 8. The returned value is
left-padded with zeros. For compatibility with previous releases of ISPF, a
length of 6 or 7 is allowed in cases where no data loss will occur.

var2 The name of a variable containing the data column number. The data
column number is a 3-digit number that is left-padded with zeros. If the
variable is VDEFINEd in character format, it should be defined with a
length of 5. The returned value is left padded with zeros. For compatibility
with previous releases of ISPF, a length of 3 or 4 is allowed in cases where
no data loss will occur. The columns are numbered starting with 1 at the
first data column. If the cursor is in the command area, the cursor value is
column 1 of the first data line on the panel; the value is column 0 if the
cursor is in the line command area. When you retrieve the cursor position
in an empty member, the line number and column number are both set to
0.

lptr The relative line number or label of the line on which the cursor is to be
located. Make sure when you set the cursor to a line number that the line
number exists.

Note: If you try use a label that has not been assigned, you receive a
return code of 20. To avoid this, use the LINENUM assignment
statement. When using the LINENUM statement, a return code of 8
is issued if the label does not exist.

ISREDIT X = LINENUM .LABEL

col The data column number where the cursor is to be located.

If the column number is beyond the end of the data area when setting the
cursor, the cursor is positioned to the next line, which is equivalent to the
first position of the line command area.

Description
The position of the cursor shows the starting or ending location for the SEEK,
FIND, CHANGE, and EXCLUDE commands. It is also used as the text split point
for TSPLIT. See “Referring to Column Positions” on page 112 for more information
on how the column number is determined.

When you run a macro, the cursor value is the cursor position on the panel at run
time.

Note: To position the cursor on the Command line, issue a return code of 1 from
the macro. For example, in CLIST code EXIT CODE(1) as the last statement
in your EDIT MACRO to position the cursor on the command line.

The following statements can change the cursor position:

CHANGE SEEK
CURSOR TSPLIT
EXCLUDE USER_STATE

CURSOR

Chapter 11. Edit Macro Commands and Assignment Statements 323

||
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|

FIND

Table 7 shows the line and column numbers returned, depending on the location of
the cursor.

Table 7. Cursor Position

If the CURSOR location is: The LINE number is:
And the COLUMN number

is:

Command area 1st display area 0

Line number field Line by the cursor 0

Left sequence number (the
sequence number is on the
left of the data when number
mode is on)

Line by cursor 0

Right sequence number Line by the cursor Column by the cursor

Left or right of the bounds Line by the cursor Column by the cursor

Data within the bounds Line by the cursor Column by the cursor

Insert blank space Line above the cursor. If the
cursor is at the top of the
panel, then the line number
returned is the line below the
cursor and the column
number is column 0.

Column by the cursor

Non-data line and its line
command area

Line below the non-data line.
If the non-data line is at the
bottom of the panel, then the
line number returned is the
line above and the column is
the data width plus 1.

0

Return Codes
The following return codes can be issued:
0 Normal completion
4 Column number beyond data, line number incremented
12 Invalid line number
20 Severe error.

Examples
To put the line number of the current cursor position into variable &LINE:
ISREDIT (LINE) = CURSOR

To set the cursor position to data line 1, column 1:
ISREDIT CURSOR = 1 1

To set the cursor position to column 1 of the last data line:
ISREDIT CURSOR = .ZLAST 1

To set the cursor position to the line with the label .LAB, without changing the
column position:
ISREDIT CURSOR = .LAB

CURSOR

324 z/OS V1R2.0 ISPF Edit and Edit Macros

CUT—Cut and Save Lines
The CUT macro command saves lines to one of eleven named clipboards for later
retrieval by the PASTE command. The lines can be appended to lines already
saved by a previous CUT command or the lines can replace the existing contents
of a clipboard..

Syntax
ISREDIT CUT [lptr-range] [DEFAULT | clipboardname]

[REPLACE|APPEND]

lptr-range
Two line pointers that specify the range of lines in the current member that
are to be added to or replace data in the clipboard. A line pointer can be a
label or relative line number. You must specify both a starting and ending
line pointer.

clipboardname
The name of the clipboard to use. If you omit this parameter, the ISPF
default clipboard (named DEFAULT) is used. You can define up to ten
additional clipboards. The size of the clipboards and number of clipboards
might be limited by installation defaults.

REPLACE|APPEND

Specify REPLACE to replace existing data in the clipboard. If you do not
specify REPLACE, the lines in the current CUT are added to the end of the
existing data within the clipboard.

If you specify APPEND, you add the data to the clipboard. This is the
default.

Description
CUT saves copies of lines from an edit session to a clipboard for later retrieval by
the PASTE command. The lines are copied from the session to the named
clipboard. Lines are specified by label names on the CUT command. The edit
macro CUT command always copies lines to the clipboard and does not delete
them from the edit session.

If you specify a clipboard name, lines are copied to that clipboard. If the specified
clipboard does not yet exist, it is created. ISPF provides a default clipboard named
DEFAULT. You can use up to 10 other clipboards that you define. The defined
clipboards exist as long as you are logged on to TSO and are deleted when you log
off.

You can view the contents of clipboards and rename existing clipboards using the
DISPLAY keyword of the CUT command.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Parameter error. Insufficient storage, or no more clipboards available.
20 Severe error.

Examples
To save all the lines in the current file to the default clipboard, appending them to
lines already in the clipboard:

CUT

Chapter 11. Edit Macro Commands and Assignment Statements 325

ISREDIT CUT .ZFIRST .ZLAST

To save all the lines in the current file to a clipboard named USERC1, replacing
any lines already in the clipboard:
ISREDIT CUT .ZFIRST .ZLAST USERC1 REPLACE

DATA_CHANGED—Query the Data Changed Status
The DATA_CHANGED assignment statement retrieves the current data-changed
status and places it in a variable.

Assignment Statement Syntax
ISREDIT (varname) = DATA_CHANGED

varname
The name of a variable containing the data-changed status, either YES or
NO. The data-changed status is initially set to NO at the beginning of an
edit session, and is reset to NO whenever a save is done. If you change
data on your screen, but issue the END command, the data_changed status
is still NO. When data is changed, or if a command is issued which might
have changed the data, the changed status is set to YES.

Description
This command returns information about whether the data might have changed.
However, it does not specify whether data is saved when the END command is
issued. Data can be saved without being changed if there is a change to the
version, number, stats, or pack mode. When DATA_CHANGED returns a value of
NO, an 8 character variable called ZEDSAVE is set to indicate whether the data is
saved. ZEDSAVE will contain either ″SAVE ″ or ″NOSAVE″. See AUTOSAVE,
CANCEL, SAVE and END for more information about saving data.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Example
To determine whether data has been changed and, if it has, to issue the built-in
SAVE command:
ISREDIT (CHGST) = DATA_CHANGED
IF &CHGST = YES THEN ISREDIT BUILTIN SAVE

DATA_WIDTH—Query Data Width
The DATA_WIDTH assignment statement retrieves the current logical data width
and places it in a variable.

Assignment Statement Syntax
ISREDIT (varname) = DATA_WIDTH

varname
The name of the variable to contain the logical data width. The logical data
width is a 3-digit value that is left-padded with zeros. If the variable is
VDEFINEd in character format, it should be defined with a length of 5.

CUT

326 z/OS V1R2.0 ISPF Edit and Edit Macros

The returned value is left padded with zeros. For compatability with
previous releases of ISPF, a length of 3 or 4 is allowed in cases where no
data loss occurs.

Description
The logical data width is the maximum space, in bytes, that is available for data
only. It does not include any COBOL or sequence number fields or, for
variable-length records, the 4-byte record descriptor word (RDW).

The value returned by the DATA_WIDTH assignment statement depends on the
record format (fixed or variable) and the setting of number mode, as shown in
Table 8. See “NUMBER—Generate Sequence Numbers” on page 266 if you need
more information about number mode.

Table 8. Data Width Return Value

Number Mode Setting Logical Data Width for
Fixed-Length Records

Logical Data Width for
Variable-Length Records

OFF LRECL LRECL - 4

ON STD LRECL - 8 LRECL - 12

ON COB LRECL - 6 N/A 1

ON STD COB LRECL - 14 N/A 1

Use the LRECL assignment statement to get the maximum space, in bytes, that is
available for data, COBOL number fields, and sequence number fields.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid command format
20 Severe error.

Example
To put the data width in variable &MAXCOL and override the boundary setting
for SEEK:
ISREDIT (MAXCOL) = DATA_WIDTH
ISREDIT SEEK 1 &MAXCOL &ARGSTR

DATAID—Query Data ID
The DATAID assignment statement retrieves the data ID for the data set currently
being edited and places it in a variable.

Assignment Statement Syntax
ISREDIT (varname) = DATAID

varname
The name of a variable containing the data ID of the data set currently
allocated for editing.

1. COBOL numbering is invalid for variable-length records.

DATA_WIDTH

Chapter 11. Edit Macro Commands and Assignment Statements 327

Description
The data ID is created by the LMINIT service to identify a data set.

If you begin an edit session with a data ID, the data ID is returned when you issue
this command. If you begin an edit session without a data ID, then an LMINIT
service obtains a data ID and returns it. On return from a top-level macro, the
editor releases any data ID it has obtained.

For further information about the use of library access services, refer to ISPF User’s
Guide

Return Codes
The following return codes can be issued:
0 The data ID returned was passed to the editor
4 Data ID was generated by and is freed by the editor
8 A previously generated data ID was returned
20 Severe error.

Example
To store the data ID in variable &DID, and then find the member MEM1 of that
data set by using the LMMFIND library access service:
ISREDIT (DID) = DATAID
ISPEXEC LMMFIND DATAID(DID) MEMBER(MEM1)
IF &LASTCC = 0 THEN ...

DATASET—Query the Current and Original Data Set Names
The DATASET assignment statement retrieves the following items and places them
in selected variables:
v the name of the data set into which the data currently being edited will be

stored
v the name of the data set from which the data currently being edited originated
v the library concatenation number of the originating data set.

Assignment Statement Syntax
ISREDIT (var1,var2,var3) = DATASET

var1 The name of a variable to contain the name of the data set currently being
edited. The data set name is fully qualified without quotation marks (').

var2 The name of a variable to contain the name of the data set where the data
currently being edited originated from. The data set name is fully qualified
without quotation marks ('). If the data currently being edited is new, a
blank is returned in this variable. If the original data is deleted, the name
of the data set where the data currently being edited originated from is still
returned in this variable.

var3 The library concatenation number of the original data set. If the data
currently being edited is new, zeroes are returned.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

DATAID

328 z/OS V1R2.0 ISPF Edit and Edit Macros

Example
To place the name of the data set you are editing and the library concatenation
number in the variables &CURDSN and &LIBNUM:
ISREDIT (CURDSN, ,LIBNUM) = DATASET

DEFINE—Define a Name
The DEFINE macro command is used to:
v Identify a macro that replaces a built-in command of the same name
v Identify programs that are edit macros
v Assign an alias to a macro or built-in command
v Make a macro or built-in command inoperable
v Reset an inoperable macro or built-in command
v Disable a macro or built-in command.

DEFINE is often used with the BUILTIN command.

Macro Command Syntax
ISREDIT DEFINE name {MACRO CMD }

{MACRO PGM }
{ALIAS name-2}
{NOP }
{RESET }
{DISABLED }

name The name with which you process the command.

MACRO CMD
Identifies the name that you are defining as a command language (CLIST
or REXX EXEC) macro, which is called in the same way as using the
SELECT service CMD keyword with a percent symbol (%) preceding the
command. That means that you can specify only CLISTs or REXX EXECs.
This operand is the default.

MACRO PGM
Identifies the name that you are defining as a program (load module)
macro, which is called by the SELECT PGM service.

ALIAS name-2
Identifies the name that you are defining as an alias of another name, with
the same characteristics. If name-2 is already an alias, the editor replaces it
with the command it names. Therefore, it is not possible to have an alias of
an alias.

NOP Makes the name you are defining and all of its aliases inoperable until you
reset them with the RESET operand. Therefore, when the name or an alias
of the name is called, nothing is processed. NOP is similar to DISABLED,
except that disabled names cannot be reset by the RESET operand.

RESET
Resets the most recent definition of the name that you are defining to the
status in effect before that definition. For example, RESET makes
inoperable names operable again.

DISABLED
Makes the name that you are defining and all of its aliases disabled until
you end the edit session. Therefore, when the name or an alias of the name
is called, nothing is processed. A disabled command or macro cannot be
restored by RESET.

DATASET

Chapter 11. Edit Macro Commands and Assignment Statements 329

Description
The effects of the DEFINE macro command apply only to the edit session of the
member or sequential data set being edited when the macro is run. This effect is
different from the DEFINE primary command.

To temporarily override DEFINE, use BUILTIN.

Note: To define RESET as disabled, enclose it in quotes ('RESET'). If you do not
use quotes, the editor interprets RESET as a keyword.

Return Codes
The following return codes can be issued:

0 Normal completion

8 RESET was attempted for a name not currently defined, or DEFINE name
ALIAS name-2 requested and name-2 is an NOP

12 DEFINE was attempted for a name not currently defined

20 Severe error (unknown command).

Examples
To define the name IJKDOIT as a CLIST or REXX macro:
ISREDIT DEFINE IJKDOIT MACRO

To define the name SETITUP as a program macro:
ISREDIT DEFINE SETITUP MACRO PGM

To define the name DOIT as an alias of the macro IJKDOIT:
ISREDIT DEFINE DOIT ALIAS IJKDOIT

To define the name SAVE to have no effect:
ISREDIT DEFINE SAVE NOP

To reset the definition of the name SAVE:
ISREDIT DEFINE SAVE RESET

To define the name FINDIT as disabled:
ISREDIT DEFINE FINDIT DISABLED

To create and update library statistics when data is saved, first set the stats mode
on. Then make it impossible to turn off by defining it as disabled. Note that none
of the commands that are defined as disabled can be called while you are editing a
member.
ISREDIT MACRO
ISREDIT STATS ON
ISREDIT DEFINE STATS DISABLED

DELETE—Delete Lines
The DELETE macro command deletes lines from the data you are editing.

DEFINE

330 z/OS V1R2.0 ISPF Edit and Edit Macros

Macro Command Syntax
ISREDIT DELETE { ALL X | NX [lptr-range]}

{[ALL] X | NX lptr-range }
{lptr }
{lptr-range }

ALL Specifies that all selected lines are deleted. The DELETE command, unlike
FIND, CHANGE, and EXCLUDE, does not use NEXT, FIRST, PREV, or
LAST. ALL is required to emphasize that NEXT is not the default.

X | NX
Restricts the lines deleted to those that are excluded or not excluded,
respectively.

lptr Specifies that a line pointer must be used to identify a line to be deleted. A
line pointer can be a label or a relative line number.

lptr-range
Specifies with two line pointers a range of lines to be deleted. The range
must consist of two labels or two relative line numbers. When specifying a
range, providing only one line pointer is incorrect. The defaults are the
editor-defined .ZFIRST and .ZLAST labels.

Description
DELETE can specify a single line or a range of lines. It can limit the lines to be
deleted to all excluded or nonexcluded lines in the data, or to all excluded or
nonexcluded lines within a line pointer range.

Return Codes
The following return codes can be issued:
0 Normal (lines deleted successfully)
4 No lines deleted
8 No standard records exist
12 Invalid line number
20 Severe error.

Examples
To delete all nonexcluded lines:
ISREDIT DELETE ALL NX

To delete all lines between labels .A and .B with a blank in column 1:
ISREDIT RESET X .A .B
ISREDIT EXCLUDE ALL " " 1 .A .B
ISREDIT DELETE ALL X .A .B

To delete the last line of data in the current data set:
ISREDIT DELETE .ZLAST

To delete the first 10 lines of data in the current data set:
ISREDIT DELETE 1 10

DISPLAY_COLS—Query Display Columns
The DISPLAY_COLS assignment statement retrieves the column numbers of the
first and last data columns that you are seeing, and places them in variables.

DELETE

Chapter 11. Edit Macro Commands and Assignment Statements 331

Assignment Statement Syntax
ISREDIT (var1,var2) = DISPLAY_COLS

var1 The name of a variable containing the column number of the first data
column visible to you. The column number is a 3-digit value that is
left-padded with zeros. If the variable is VDEFINEd in character format, it
should be defined with a length of 5. The returned value is left padded
with zeros. For compatibility with previous releases of ISPF, a length of 3
or 4 is allowed in cases where no data loss will occur.

var2 The name of a variable containing the column number of the last data
column visible to you. The column number is a 3-digit value that is
left-padded with zeros. If the variable is VDEFINEd in character format, it
should be defined with a length of 5. The returned value is left padded
with zeros. For compatibility with previous releases of ISPF, a length of 3
or 4 is allowed in cases where no data loss will occur.

Description
Columns that contain sequence numbers are not considered data columns. Do not
use this assignment statement in initial macros because the columns displayed are
not known until the data first appears. See “Referring to Column Positions” on
page 112 for more information.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid command format
20 Severe error.

Example
To put the leftmost and rightmost column values displayed to you in variables
&LEFT and &RIGHT:
ISREDIT (LEFT,RIGHT) = DISPLAY_COLS

DISPLAY_LINES—Query Display Lines
The DISPLAY_LINES assignment statement retrieves the relative line numbers of
the first and last data lines that would appear at this point if the macro ended, and
places them in variables. Other non-data lines might be on the display. Do not use
this assignment statement in an initial macro because the lines displayed are not
known until the data is first displayed.

Assignment Statement Syntax
ISREDIT (var1,var2) = DISPLAY_LINES

var1 The name of a variable containing the relative line number of either the
first visible data line or block of excluded lines if the macro ended at this
point. The relative line number is a 6-digit value that is left-padded with
zeros. If the variable is VDEFINEd in character format, it should be
defined with a length of 8. The returned value is left-padded with zeros.
For compatibility with previous releases of ISPF, a length of 6 or 7 is
allowed in cases where no data loss will occur.

var2 The name of a variable containing the relative line number of either the
last visible data line or block of excluded lines. The relative line number is

DISPLAY_COLS

332 z/OS V1R2.0 ISPF Edit and Edit Macros

||
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|
|

||
|

a 6-digit value that is left-padded with zeros. If the variable is VDEFINEd
in character format, it should be defined with a length of 8. The returned
value is left-padded with zeros. For compatibility with previous releases of
ISPF, a length of 6 or 7 is allowed in cases where no data loss will occur.

Return Codes
The following return codes can be issued:
0 Normal completion
4 No visible data lines
8 No existing data lines
12 Invalid command format
20 Severe error.

Example
To place the top and bottom line numbers in variables &TOP and &BOT:
ISREDIT (TOP,BOT) = DISPLAY_LINES

DOWN—Scroll Down
The DOWN macro command scrolls data down from the current panel position.

Macro Command Syntax
ISREDIT DOWN amt
amt The number of lines (0 - 9999) to scroll, or one of the following operands:

MAX Scrolls to the end of data in the specified direction.

HALF Displays the next sequential half panel of data.

PAGE Displays the next sequential full panel of data.

CURSOR
Scrolls until the line on which the cursor is located becomes the
first data line on the panel.

DATA Scrolls until the last data line on the current panel of data becomes
the first data line on the next panel of data.

Description
To scroll down using the panel position when the macro was first issued, use
USER_STATE assignment statements to save and then restore the panel position
operands.

When you issue DOWN, the non-data lines on the panel affect the number of lines
scrolled. However, if you define a macro named DOWN, it only overrides the
DOWN command when used from another macro. DOWN does not change the
cursor position and cannot be used in an initial macro.

The actual number of lines appearing on the panel is determined by:
v The number of lines excluded from the display
v The terminal display size and split-panel line
v The number of special temporary lines appearing, such as the ==ERR>, ==CHG>,

=COLS>, ======, =PROF>, ==MSG>, =NOTE=, =BNDS>, =TABS> or =MASK> lines.

The first line appearing is determined in one of two ways: (1) a LOCATE
command can set the line first on the panel, and (2) the first line to appear

DISPLAY_LINES

Chapter 11. Edit Macro Commands and Assignment Statements 333

|
|
|
|

depends on whether the cursor was set explicitly by a CURSOR assignment
statement or implicitly by a SEEK, FIND, CHANGE, or TSPLIT command. Since
the cursor must be on the panel, the line that is the first line on the panel may be
different from the line that was first when you called the macro.

Return Codes
The following return codes can be issued:
0 Normal completion
2 No more data DOWN
4 No visible lines
8 No data to display
12 Amount not specified
20 Severe error.

Examples
To scroll down to the end of the data set:
ISREDIT DOWN MAX

To display the next half panel of data:
ISREDIT DOWN HALF

To display the next full panel of data:
ISREDIT DOWN PAGE

To make the line where the cursor is placed the first one on the display:
ISREDIT DOWN CURSOR

To display the next page less one line:
ISREDIT DOWN DATA

EDIT—Edit from within an Edit Session
The EDIT macro command allows you to edit a member of the same partitioned
data set during your current edit session.

Macro Command Syntax
ISREDIT EDIT member

member
A member of the library or other partitioned data set you are currently
editing. You may enter a member pattern to generate a member list.

Description
Editing one data set or member while you are already editing another is called
recursive editing. Your initial edit session is suspended until the second-level edit
session is complete. Editing sessions can be nested until you run out of storage.

To exit from a nested edit session, END or CANCEL must be processed by a macro
or entered by you. The current edit session resumes.

The EDIT service call, ISPEXEC EDIT, is an alternate method of recursively starting
the editor. It offers the option of editing another data set and specifying an initial
macro.

DOWN

334 z/OS V1R2.0 ISPF Edit and Edit Macros

For more information on using the EDIT service for recursive editing, refer to ISPF
Services Guide

Return Codes
The following return codes can be issued:
0 Normal completion, data was saved
4 Normal completion, data was not saved
12 Your error (invalid member name, recovery pending)
14 Member in use
20 Severe error.
28 No ISREDIT MACRO statement preceded this call, or BROWSE was

substituted because of the size of the member being edited.

Example
To recursively edit the member OLDMEM in your current ISPF library:
ISREDIT EDIT OLDMEM

END—End the Edit Session
The END macro command ends the editing of the current sequential data set or
partitioned data set member.

Macro Command Syntax
ISREDIT END

Description
If an edit macro contains an ISREDIT END statement, there can be no other
ISREDIT or ISPEXEC statements following it. If one of these kinds of statements
does follow an ISREDIT END, the edit macro ends with an error when that
statement occurs. However, any other CLIST, REXX EXEC, or program statements
can follow an ISREDIT END statement and process normally.

If no aliases have been defined for END, the response of the editor to the END
command depends on:
v Whether changes were made to the data during your current edit session
v If changes were made, whether a SAVE command was entered after the last

change
v The setting of number mode, autonum mode, stats mode, autolist mode, and

autosave mode in the edit profile
v Whether you were editing a member that was an alias of another member.

Note: When END is entered in the macro field in the edit prompt panel
(ISRUEDIT), the macro name is not saved in the profile for use in future
sessions. This is to avoid having the editor appear to do nothing when it is
invoked from the data set list.

See “Ending an Edit Session” on page 14 for more information.

Return Codes
The following return codes can be issued:

0 Normal completion

EDIT

Chapter 11. Edit Macro Commands and Assignment Statements 335

|
|
|
|

4 New member saved

12 END not done, AUTOSAVE OFF PROMPT set, or Data not saved
(insufficient space)

20 Severe error.

Example
To end the current edit session:
ISREDIT END

EXCLUDE—Exclude Lines from the Display
The EXCLUDE macro command hides lines that contain a search string from view,
and replaces them with a dashed line. To see the lines again, you enter either the
RESET or RESET EXCLUDED command.

Macro Command Syntax
ISREDIT EXCLUDE string [label-range] [NEXT] [CHARS] [col-1 [col-2]]

[ALL] [PREFIX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

string The search string you want to exclude.

Note: For edit macros written in CLIST, strings that contain an open
comment delimiter (/*) must be placed within the &STR() delimiters
such as &STR(/*XXX). The maximum allowable length of the string
is 256 bytes. If you are specifying a hex string, the maximum is 128
hexadecimal characters.

label-range
Two labels that identify the lines within which the EXCLUDE command is
to search. The defaults are the editor-defined .ZFIRST and .ZLAST labels.

When using a macro that uses NEXT or PREV with a label-range, be
careful concerning cursor placement. If the cursor is currently placed below
the label-range, and the NEXT occurence of a string is requested, the
process returns a return code of 4 and the string is not found, even if it
exists within the label-range.

If the cursor is currently placed above the label-range, and the PREV
occurence of a string is requested, the process returns a return code of 4
and the string is not found, even if it exists within the label-range.

NEXT Starts at the first position after the current cursor location and searches
ahead to find the next occurrence of string. NEXT is the default.

ALL Starts at the top of the data and searches ahead to find all occurrences of
string.

FIRST Starts at the top of the data and searches ahead to find the first occurrence
of string.

LAST Starts at the bottom of the data and searches backward to find the last
occurrence of string.

PREV Starts at the current cursor location and searches backward to find the
previous occurrence of string.

END

336 z/OS V1R2.0 ISPF Edit and Edit Macros

CHARS
Locates string anywhere the characters match. CHARS is the default.

PREFIX
Locates string at the beginning of a word.

SUFFIX
Locates string at the end of a word.

WORD
Locates string when it is delimited on both sides by blanks or other
non-alphanumeric characters.

col-1 and col-2
Numbers that identify the columns the EXCLUDE command is to search.

Description
You can use the EXCLUDE command with the FIND and CHANGE commands to
find a search string, change it, and then exclude the line that contains the string
from the panel.

To exclude the next nonexcluded line that contains the letters ELSE without
specifying any other qualifications, include the following command in an edit
macro:
ISREDIT EXCLUDE ELSE

Since no other qualifications were specified, the letters ELSE can be:
v Uppercase or a mixture of uppercase and lowercase
v At the beginning of a word (prefix), the end of a word (suffix), or the entire

word (word)
v Anywhere within the current boundaries.

To exclude the next line that contains the letters ELSE, but only if the letters are
uppercase, include the following command in an edit macro:
ISREDIT EXCLUDE C'ELSE'

This type of exclusion is called a character string exclusion (note the C that
precedes the search string) because it excludes the next line that contains the letters
ELSE only if the letters are found in uppercase. However, since no other
qualifications were specified, the exclusion occurs no matter where the letters are
found on a nonexcluded line, as outlined in the previous list.

For more information, including other types of search strings, see “Finding,
Seeking, Changing, and Excluding Data” on page 51.

Return Codes
The following return codes can be issued:
0 Normal completion
4 String not found
8 Lines not excluded
12 Inconsistent parameters
20 Severe error.

EXCLUDE

Chapter 11. Edit Macro Commands and Assignment Statements 337

Examples
This example excludes the first nonexcluded line in the data set that contains the
letters ELSE. However, the letters must occur on or between lines labeled .E and .S
and they must be the first four letters of a word:
ISREDIT EXCLUDE ELSE .E .S FIRST PREFIX

This example excludes the last nonexcluded line in the data set that contains the
letters ELSE. However, the letters must occur on or between lines labeled .E and .S
and they must be the last four letters of a word.
ISREDIT EXCLUDE ELSE .E .S LAST SUFFIX

This example excludes the first nonexcluded line that immediately precedes the
cursor position and that contains the letters ELSE. However, the cursor must not be
positioned ahead of the lines labeled .E and .S. Also, the letters must occur on or
between the labeled lines; they must be standalone characters (not part of any
other word); and they must exist within columns 1 and 5:
ISREDIT EXCLUDE ELSE .E .S PREV WORD 1 5

EXCLUDE_COUNTS—Query Exclude Counts
The EXCLUDE_COUNTS assignment statement retrieves values set by the most
recently processed EXCLUDE command and places them in variables.

Assignment Statement Syntax
ISREDIT (var1,var2) = EXCLUDE_COUNTS

var1 The name of a variable to contain the number of strings found. The
number of strings is an 8-digit value that is left-padded with zeros.

var2 The name of a variable to contain the number of lines excluded. The
number of lines excluded is an 8-digit value that is left-padded with zeros.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid command format
20 Severe error.

Example
To determine the number of lines that contain the word BOX:
ISREDIT EXCLUDE ALL BOX
ISREDIT (,BOXLINES) = EXCLUDE_COUNTS

FIND—Find a Search String
The FIND macro command locates one or more occurrences of a search string.

Macro Command Syntax
ISREDIT FIND string [label-range] [NEXT] [CHARS] [X] [col-1 [col-2]]

[ALL] [PREFIX] [NX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

string The search string you want to find.

EXCLUDE

338 z/OS V1R2.0 ISPF Edit and Edit Macros

Note: For edit macros written in CLIST, strings that contain an open
comment delimiter (/*) must be placed within the &STR() delimiters
such as &STR(/*XXX). The maximum allowable length of the string
is 256 bytes. If you are specifying a hex string, the maximum is 128
hexadecimal characters.

label-range
Two labels that identify the lines within which the FIND command is to
search. The defaults are the editor-defined .ZFIRST and .ZLAST labels.

When using a macro that uses NEXT or PREV with a label-range, be
careful concerning cursor placement. If the cursor is currently placed below
the label-range, and the NEXT occurence of a string is requested, the
process returns a return code of 4 and the string is not found, even if it
exists within the label-range.

If the cursor is currently placed above the label-range, and the PREV
occurence of a string is requested, the process returns a return code of 4
and the string is not found, even if it exists within the label-range.

NEXT Starts at the first position after the current cursor location and searches
ahead to find the next occurrence of string. NEXT is the default.

ALL Starts at the top of the data and searches ahead to find all occurrences of
string.

FIRST Starts at the top of the data and searches ahead to find the first occurrence
of string.

LAST Starts at the bottom of the data and searches backward to find the last
occurrence of string.

PREV Starts at the current cursor location and searches backward to find the
previous occurrence of string.

CHARS
Locates string anywhere the characters match. CHARS is the default.

PREFIX
Locates string at the beginning of a word.

SUFFIX
Locates string at the end of a word.

WORD
Locates string when it is delimited on both sides by blanks or other
non-alphanumeric characters.

X Scans only lines that are excluded from the display.

NX Scans only lines that are not excluded from the display.

col-1 and col-2
Numbers that identify the columns FIND is to search.

Description
Use the SEEK macro command instead of FIND if you want to locate a string
without changing the exclude status of the line that contains the string.

You can use FIND with the EXCLUDE and CHANGE commands to find a search
string, change it, and then exclude the line that contains the string from the panel.

FIND

Chapter 11. Edit Macro Commands and Assignment Statements 339

To find the next occurrence of the letters ELSE without specifying any other
qualifications, include the following line in an edit macro:
ISREDIT FIND ELSE

Since no other qualifications were specified, the letters ELSE can be:
v Uppercase or a mixture of uppercase and lowercase
v At the beginning of a word (prefix), the end of a word (suffix), or the entire

word (word)
v In either an excluded or a nonexcluded line
v Anywhere within the current boundaries.

To find the next occurrence of the letters ELSE, but only if the letters are uppercase:
ISREDIT FIND C'ELSE'

This type of search is called a character string search (note the C that precedes the
search string) because it finds the next occurrence of the letters ELSE only if the
letters are in uppercase. However, since no other qualifications were specified, the
letters can be found anywhere in the data set or member, as outlined in the
preceding list.

For more information, including other types of search strings, see “Finding,
Seeking, Changing, and Excluding Data” on page 51.

Return Codes
The following return codes can be issued:
0 Normal completion
4 String not found
12 Syntax error
20 Severe error.

Examples
The following example finds the first occurrence in the data set of the letters ELSE.
However, the letters must occur on or between lines labeled .E and .S and they
must be the first four letters of a word:
ISREDIT FIND ELSE .E .S FIRST PREFIX

The following example finds the last occurrence in the data set of the letters ELSE.
However, the letters must occur on or between lines labeled .E and .S; they must
be the last four letters of a word; and they must be found in an excluded line.
ISREDIT FIND ELSE .E .S LAST SUFFIX X

The following example finds the first occurrence of the letters ELSE that
immediately precedes the cursor position. However, the cursor must not be
positioned ahead of the lines labeled .E and .S. Also, the letters must occur on or
between lines labeled .E and .S; they must be standalone characters (not part of
any other word); they must be found in a nonexcluded line; and they must exist
within columns 1 and 5:
ISREDIT FIND ELSE .E .S PREV WORD NX 1 5

FIND_COUNTS—Query Find Counts
The FIND_COUNTS assignment statement retrieves values that were set by the
most recently entered FIND or RFIND command, and places these values in
variables.

FIND

340 z/OS V1R2.0 ISPF Edit and Edit Macros

Assignment Statement Syntax
ISREDIT (var1,var2) = FIND_COUNTS

var1 The name of a variable to contain the number of strings found. The
number of strings is an 8-digit value that is left-padded with zeros.

var2 The name of a variable to contain the number of lines on which strings
were found. The number of lines on which strings were found is an 8-digit
value that is left-padded with zeros.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid command format
20 Severe error.

Example
To find all occurrences of && in the line labeled .A and loop through and process
them:
ISREDIT FIND .A .A && ALL
ISREDIT (FINDS) = FIND_COUNTS
DO WHILE &FINDS > 0

...
END

FLIP—Reverse Exclude Status of Lines
The FLIP macro command lets you reverse the exclude status of a specified range
of lines or of all the lines in a file, including data, information, message, and note
lines.

Assignment Statement Syntax
ISREDIT FLIP [label-range]

label-range
Two labels that identify the lines within which the FLIP command is to
reverse the exclude status.

If one label is specified, only that labeled line is reversed. This is optional.

Return Codes
The following return codes can be issued:

0 Successful completion. The excluded status of the requested lines was
reversed.

20 Severe error.

Examples
The following are examples of statements using the FLIP commands from an Edit
macro. The actual values for .a and .b can be defined by edit macro or by the
user.
ISREDIT FLIP /* Flip all lines */
ISREDIT FLIP .ZL .ZF /* Flip all lines */
ISREDIT FLIP .ZF /* Flip first line in file */
ISREDIT FLIP .a .b /* Flip lines between and including .a and .b */
ISREDIT FLIP .a /* Flip line labeled .a */

FIND_COUNTS

Chapter 11. Edit Macro Commands and Assignment Statements 341

FLOW_COUNTS—Query Flow Counts
The FLOW_COUNTS assignment statement retrieves values that were set by the
most recently entered TFLOW command, and places these values in variables.

Assignment Statement Syntax
ISREDIT (var1,var2) = FLOW_COUNTS

var1 The name of a variable to contain the number of original lines that
participated in the text flow operation. The number of original lines is an
8-digit value that is left-padded with zeros.

var2 The name of a variable to contain the number of lines that were generated
by the text flow operation. The number of lines is an 8-digit value that is
left-padded with zeros.

If the value in var1 is larger than the value in var2, the difference is the
number of lines that were deleted from the current data because of the text
flow operation. If the value in var1 is less than the value in var2, the
difference is the number of lines that were added to the current data
because of the text flow operation.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Example
To retrieve the value of the rightmost column displayed, allow a margin of 8 for
the text flow, and then take action if lines were added because of the text flow
operation:
ISREDIT (,MAXCOL) = DISPLAY_COLS
ISREDIT TFLOW .ZCSR &EVAL(MAXCOL - 8)
ISREDIT (INLINE,OUTLIN) = FLOW_COUNTS
IF &OUTLIN > &INLINE THEN DO

...

HEX—Set or Query Hexadecimal Mode
The HEX macro command sets hexadecimal mode, which determines whether data
appears in hexadecimal format.

The HEX assignment statement either sets hexadecimal mode or retrieves the
current values of hexadecimal mode, and places them in variables.

Macro Command Syntax
ISREDIT HEX [ON DATA]

[ON VERT]
[OFF]

ON DATA
Displays the hexadecimal representation of the data as a string of
hexadecimal characters (two per byte) under the characters.

ON VERT
Displays the hexadecimal representation of the data vertically (two rows
per byte) under each character.

FLOW_COUNTS

342 z/OS V1R2.0 ISPF Edit and Edit Macros

OFF Does not display hexadecimal representation of the data.

Assignment Statement Syntax
ISREDIT (var1,var2) = HEX
ISREDIT HEX = [ON DATA]

[ON VERT]
[OFF]

var1 The name of a variable to contain ON or OFF.

var2 The name of a variable to contain DATA, VERT, or blanks.

ON DATA
Same as macro command syntax.

ON VERT
Same as macro command syntax.

OFF Same as macro command syntax.

Description
The HEX macro command and assignment statement determines whether the
editor displays hexadecimal representation in a vertical or data string format.

When the editor is operating in hexadecimal mode, three lines are displayed for
each source line. The first line shows the data in standard character form, while the
next two lines show the same data in hexadecimal representation.

Besides normal editing on the first of the three lines, you can change any
characters by typing over the hexadecimal representations.

You can also use the FIND, CHANGE, and EXCLUDE commands to find, change,
or exclude invalid characters or any specific hexadecimal character, regardless of
the setting of hexadecimal mode. See the discussion of picture strings and
hexadecimal strings under “Finding, Seeking, Changing, and Excluding Data” on
page 51.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Examples
To put the value of hexadecimal mode (on or off) in variable &HEXMODE and to
process if hexadecimal mode is on:
ISREDIT (HEXMODE) = HEX
IF &HEXMODE = ON THEN -

...

To turn hexadecimal mode off:
ISREDIT HEX OFF

HEX

Chapter 11. Edit Macro Commands and Assignment Statements 343

HILITE—Enhanced Edit Coloring
HILITE is used to control the use of color in the editor by changing the settings for
the enhanced color and language-sensitive editing features.

The HILITE dialog is not available in the Edit Macro environment.

Note: Language sensitive and enhanced coloring of the edit session is only
available if it is enabled by the installer or person who maintains the ISPF
product. For information on enabling the enhanced color functions, see ISPF
Planning and Customizing

Macro Command Syntax
ISREDIT HILITE [ON] [AUTO] [RESET] [PAREN] [FIND] [CURSOR] [SEARCH] [DISABLED]

[OFF] [DEFAULT]
[LOGIC] [OTHER]
[IFLOGIC] [ASM]
[DOLOGIC] [BOOK]
[NOLOGIC] [C]

[COBOL]
[DTL]
[JCL]
[PANEL]
[PASCAL]
[PLI]
[REXX]
[SKEL]
[IDL]

ON Sets program coloring ON and turns LOGIC coloring off.

OFF Sets coloring OFF, with the exception of cursor highlighting.

LOGIC
LOGIC highlighting matches logical language-specific keywords in the
same color. If an unmatched closing keyword is found, such as END for
PL/I or :eul. for BookMaster, it is highlighted in reverse video pink only if
HILITE LOGIC is active. When logic is being highlighted, only comments
are highlighted along with it.

Logic highlighting is available for PL/I, PL/X, Rexx, OTHER, C, SKELS,
Pascal and BookMaster only. HILITE LOGIC turns on both IFLOGIC and
DOLOGIC.

Note: LOGIC highlighting can be turned off by issuing HILITE ON,
HILITE NOLOGIC, or HILITE RESET commands. Changing the
HILITE language does not change the LOGIC setting.

IFLOGIC
Turns on IF/ELSE logic matching. IFLOGIC matches IF and ELSE
statements. When IFLOGIC is enabled, unmatched ELSE keywords are
highlighted in reverse video pink.

DOLOGIC
Turns on DO/END logic matching. DOLOGIC matches logical blocks such
as DO/END in PL/I or :ol/:eol in BookMaster. For the C language,
DOLOGIC matches curly braces ({ and }). C trigraphs for curly braces are
not recognized and are not supported by DOLOGIC highlighting. When
DOLIGOC is enabled unmatched logical block terminators, (such as END
keywords in PL/I, :e tags in BookMaster or right braces (}) in C are
highlighted in reverse video pink.

HILITE

344 z/OS V1R2.0 ISPF Edit and Edit Macros

NOLOGIC
Same as ON.

AUTO
Allows ISPF to determine the language.

DEFAULT
Highlights the data in a single color.

OTHER
Highlight the data as a pseudo-PL/I language.

ASM Highlights the data as Assembler.

BOOK
Highlights the data as BookMaster.

C Highlights the data as C.

COBOL
Highlights the data as COBOL.

DTL Highlights the data as Dialog Tag Language.

JCL Highlights the data as MVS Job Control Language.

PANEL
Highlights the data as ISPF Panel Language.

PASCAL
Highlights the data as Pascal.

PLI Highlights the data as PL/I.

REXX Highlights the data as Rexx.

SKEL Highlights the data as ISPF Skeleton Language.

IDL Highlights the data as IDL.

RESET
Resets defaults (AUTO, ON, Find and Cursor on).

PAREN
Toggles parenthesis matching. When parenthesis matching is active, only
comments and quoted strings are specially colored. All other code appears
in the default color. Note that extra parenthesis highlighting is always
active when highlighting is active.

Parentheses within quoted strings and comments are not checked or
highlighted by the parenthesis matching function.

FIND The HILITE FIND command toggles the highlighting color of any string
that would be found by an RFIND. The user can select the highlight color.
The default is reverse video white.

Only non-picture strings are supported, and the only additional qualifiers
recognized are hex strings (X’...’), character strings (C’...’), text strings
(T’...’), WORD, PREFIX and SUFFIX, and boundaries specified in the FIND
command. Hex strings may be highlighted. but non-displayable characters
are not highlighted. Default bounds and labels are ignored when FIND
strings are highlighted.

Because FIND highlighting is not quite as robust at the FIND command
itself, the editor may highlight more occurrences of the FIND string than
FIND would actually locate.

HILITE

Chapter 11. Edit Macro Commands and Assignment Statements 345

RESET has been enhanced, through the addition of a FIND operand, to
temporarily disable the highlighting of FIND strings until the next FIND,
RFIND, CHANGE, or RCHANGE command is issued. RESET with the
FIND operand (or no operands at all), temporarily disables the
highlighting of FIND strings.

CURSOR
The CURSOR operand toggles the highlighting of the phrase that contains
the cursor in a user-selectable color. The default is white.

Cursor highlighting in Edit is performed in a manner similar to the way it
is done in Browse. The entire phrase from the previous blank to the next
blank is highlighted.

SEARCH
HILITE SEARCH finds the first unmatched END, ELSE, }, or) above the
last displayed line on the panel. If a mismatched item is found, the file is
scrolled so that the mismatch is at the top of the panel. The search for
mismatches only occurs for lines above the last displayed line, so you may
need to scroll to the bottom of the file before issuing the HI SEARCH
command.

Search is not available for the when the DEFAULT language operand is
used.

DISABLED
Turns off all HILITE features and removes all action bars. This benefits
performance at the expense of function. Since DISABLED status is not
stored in the edit profile, you need to reenter this operand each time you
enter the editor. If ISREDIT HILITE DISABLED is issued by a macro, any
attempts to restore highlighting within the same macro invocation are
ignored.

Description
The HILITE macro command can be used to highlight, in user-specified colors,
numerous language-specific constructs, program logic features, the phrase
containing the cursor, and any strings that match the previous FIND operation or
those that would be found by an RFIND or RCHANGE request. In addition, when
HILITE is entered with no operands, a dialog appears that allows you to set
default colors for the data area in non-program files, for any characters typed since
the previous Enter or function key entry, and for strings located by the FIND
command.

Both HI and HILIGHT are valid synonyms for HILITE.

Note: Highlighting is not available for edit sessions that involve the following:
v Data sets with record lengths greater than 255
v Mixed mode edit sessions (normally used when editing DBCS data)
v Formatted data.

If a macro issues HILITE in any of these situations, a return code of 12 is
set.

Return Codes
The following return codes can be issued:
0 Normal completion.

HILITE

346 z/OS V1R2.0 ISPF Edit and Edit Macros

8 Logic or search not supported in the current environment. Invalid
language.

12 Hilite dialog is invalid from an edit macro or Hilite not available because
of the installation defaults or because the edit panel in use is not enabled
for enhanced color.

20 Severe error. Possibly extra parameters.

IMACRO—Set or Query an Initial Macro
The IMACRO macro command saves the name of an initial macro in the current
edit profile.

The IMACRO assignment statement sets or retrieves the value for the initial macro
in the current profile, and places it in a variable.

See “Initial Macros” on page 27 for more information on creating and using initial
macros.

Macro Command Syntax
ISREDIT IMACRO {name | NONE}

name Identifies the initial macro to be run when editing the data set type that
matches this profile. This macro is run before any data is displayed.

NONE
Shows that no macro is to be run at the beginning of each edit session. The
editor returns a value of NONE when no initial macro has been specified.

Assignment Statement Syntax
ISREDIT (varname) = IMACRO
ISREDIT IMACRO = name

varname
The name of a variable to contain the name of the initial macro.

name Same as macro command syntax.

Return Codes
The following return codes can be issued:
0 Normal completion
4 IMACRO set not accepted; profile is locked
12 Invalid name specified
20 Severe error.

Examples
To set the initial macro name to ISCRIPT:
ISREDIT IMACRO ISCRIPT

To set no initial macro:
ISREDIT IMACRO NONE

To store the name of the initial macro in the variable &IMACNAM:
ISREDIT (IMACNAM) = IMACRO

HILITE

Chapter 11. Edit Macro Commands and Assignment Statements 347

INSERT—Prepare Display for Data Insertion
The INSERT macro command appears for one or more blank lines, and allows you
to fill them with data.

Macro Command Syntax
ISREDIT INSERT lptr [numlines]

lptr A label or a relative line number that shows which line you want the
inserted line or lines to follow.

numlines
The number of lines to appear for data input; these lines are not saved
until they contain data. If you do not type a number or if the number you
type is 1, only one data input line appears.

Description
Use the INSERT macro command for data input. Inserted lines are initialized with
data from the mask line. However, they are not data lines and cannot be referred
to by any macro. Inserted lines are deleted if they do not contain data.

You must specify that the line referenced on INSERT should be displayed;
otherwise, you will not see the inserted line. Use LOCATE to position a line at the
top of the display.

Do not use this command for adding lines with specific data; instead, use the
LINE_BEFORE and LINE_AFTER assignment statements.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid line number
20 Severe error.

Example
To open a 5-line area for data input after the line with the label .POINT, locate
.POINT to position it to the top of the display. Then issue INSERT:
ISREDIT LOCATE .POINT
ISREDIT INSERT .POINT 5

LABEL—Set or Query a Line Label
The LABEL assignment statement sets or retrieves the values for the label on the
specified line and places the values in variables.

Assignment Statement Syntax
ISREDIT (var1,var2) = LABEL lptr
ISREDIT LABEL lptr = labelname [level]

var1 The name of a variable to contain the name of the label.

var2 The name of the variable to contain the nesting level of the label. It must
be a 3-character value that is left-padded with zeros.

lptr A line pointer identifying the line for which a label must be set or
retrieved. A line pointer can be a label or a relative line number.

INSERT

348 z/OS V1R2.0 ISPF Edit and Edit Macros

Use the LINENUM assignment statement to obtain the current relative line
number of a line with a label. See the LOCATE and RESET command
descriptions, which use labels to specify line ranges.

labelname
The name of the label. It must begin with a period, followed by 1 to 8
alphabetic characters, the first of which must not be Z. No special
characters or numeric characters are allowed. If the label is to be level 0, it
must be 5 characters or less. When you want to delete a label, set the label
name to blank (' ').

The LINENUM assignment statement can be used to determine whether a
label exists. For more information, refer to the description of the
LINENUM assignment statement later in this chapter.

level The highest nesting level at which this label is visible to you or to a macro.
Level 0 is the highest level. Labels at this level are visible to you and to all
levels of nested macros. Level 1 is not visible to you, but it is visible to all
macros, and so on. The level can never exceed the current nesting level.
The maximum nesting level is 255. The level number defaults to the
current nesting level.

Description
A range of labels is particularly useful for commands that operate on a range of
lines, such as those in the following list:

CHANGE EXCLUDE LOCATE SEEK
CREATE FIND REPLACE SORT
DELETE FLIP RESET SUBMIT

Return Codes
The following return codes can be issued:
0 Normal completion
4 Label name not returned, specified line has no label
8 Label set, but an existing label at the same level was deleted
12 Line number specified is beyond the end of data
20 Severe error.

Example
To get the line of data at the cursor, look for the next occurrence of the string in
the variable &ARG, and then label the line if it is found and currently unlabeled:
ISREDIT (NAME) = LINE .ZCSR
ISREDIT FIND &ARG
IF &LASTCC = 0 THEN -

ISREDIT (LBL,NEST) = LABEL .ZCSR
IF &LBL=&STR() THEN -

ISREDIT LABEL .ZCSR = .POINT 0

LEFT—Scroll Left
The LEFT macro command scrolls data to the left of the current panel position.

Macro Command Syntax
ISREDIT LEFT amt

LABEL

Chapter 11. Edit Macro Commands and Assignment Statements 349

amt The scroll amount, the number of columns (0 - 9999) to scroll, or one of the
following operands:

MAX Displays the first page of data to the left.

HALF Displays the next half-panel of data to the left.

PAGE Displays the next full panel of data to the left.

CURSOR
Scrolls until the column on which the cursor is located becomes the
first data column on the panel.

DATA Scrolls until the first column on the current panel of data becomes
the last column on the next panel.

Description
The editor stops scrolling when it reaches the current BOUNDS setting. For
example, if the left bound is position 9 and positions 21 to 92 are displayed,
issuing ISREDIT LEFT 20 leaves positions 9 to 80 displayed, not 1 to 72.

To scroll to the left using the panel position when the macro was issued, use
USER_STATE assignment statements to save and then restore the panel position
operands.

If you define a macro named LEFT, it overrides the LEFT command when used
from another macro. LEFT does not change the cursor position and cannot be used
in an initial macro. For further information, see the BOUNDS and
DISPLAY_COLUMNS descriptions.

Return Codes
The following return codes can be issued:
0 Normal completion
4 No visible lines
8 No data to display
12 Amount not specified
20 Severe error.

Example
To scroll the display to the left by the number of columns specified in variable
&COL:
ISREDIT LEFT &COL

LEVEL—Set or Query the Modification Level Number
The LEVEL macro command allows you to control the modification level that is
assigned to a member of an ISPF library.

The LEVEL assignment statement either sets the modification level or retrieves the
current modification level and places it in a variable.

See “Version and Modification Level Numbers” on page 29 for more information
about level numbers.

Macro Command Syntax
ISREDIT LEVEL num

LEFT

350 z/OS V1R2.0 ISPF Edit and Edit Macros

num The modification level. It can be any number from 0 to 99.

Assignment Statement Syntax
ISREDIT (varname) = LEVEL
ISREDIT LEVEL = num

varname
The name of a variable to contain the modification level. The modification
level is a 2-digit value that is left-padded with zeros.

num Same as above.

Return Codes
The following return codes can be issued:
0 Normal completion
4 Statistics mode is off; the command is ignored
12 Invalid value specified
20 Severe error.

Examples
To reset the modification level to 1:
ISREDIT LEVEL = 1

To save the value of the modification level in variable &MODLVL:
ISREDIT (MODLVL) = LEVEL

LINE—Set or Query a Line from the Data Set
The LINE assignment statement either sets or retrieves the data from the data line
specified by a line pointer, and places it in a variable.

Assignment Statement Syntax
ISREDIT (varname) = LINE lptr
ISREDIT LINE lptr = data

varname
Specifies the name of a variable to hold the contents of the specified data
line.

lptr Specifies that a line pointer must be used. A line pointer can be a label or a
relative line number.

data Specifies that the following forms can be used:
v Simple string
v Delimited string
v Variable
v Template (< col,string >)
v Merge format (string-1 + string-2, operand + string-2, string-1 + operand)
v Operand:

LINE Data from this line is used.
LINE lptr

Data from the line with the given line pointer (lptr).
MASKLINE

Data from the mask line.

LEVEL

Chapter 11. Edit Macro Commands and Assignment Statements 351

TABSLINE
Data from the tabs line.

Description
The logical data width of the line determines how many characters are retrieved or
set. See the description of the DATA_WIDTH command for information on
determining the current logical data width.

You must specify the line pointer to set or retrieve a line. To set data on a line, you
can use a variety of data formats: (variable), templates, or merging a line with
other data. The data on the line is completely overlaid with the data specified on
this command.

Return Codes
The following return codes can be issued:
0 Normal completion
4 Data truncated (line shorter than data supplied)
8 Variable not found
12 Invalid line number
16 Variable data truncated
20 Severe error.

Examples
To replace the data on line 7 with data from a variable named NEWDAT:
ISREDIT LINE 7 = (NEWDAT)

Note: This syntax is preferred over
ISREDIT LINE 7 = &NEWDAT

because the variable is not rescanned by either the language processor or
ISPF.

To set comment delimiters in columns 40 and 70, blanking the rest of the line:
ISREDIT LINE 1 = < 40 '&STR(/*)' 70 '&STR(*/)' >

To overlay the first 2 columns of line 2 with //:
ISREDIT LINE 2 = LINE + //

To merge mask line data with data from variable &VAR:
ISREDIT LINE 3 = MASKLINE + (VAR)

LINE_AFTER—Add a Line to the Current Data Set
The LINE_AFTER assignment statement adds a line after a specified line in the
current data set.

Assignment Statement Syntax
ISREDIT LINE_AFTER lptr = [DATALINE] data

[INFOLINE]
[MSGLINE]
[NOTELINE]

lptr Specifies that a line pointer must be used to identify the line after which
the new line is to be inserted. A line pointer of 0 causes the new line to be

LINE

352 z/OS V1R2.0 ISPF Edit and Edit Macros

inserted at the beginning of the current data set. The line pointer can be
either a label or a relative line number.

DATALINE
The line inserted is a data line.

INFOLINE
The line inserted is a temporary, non-data line. The line command area
shows ====== in high intensity and the data on the line is in high intensity,
also. The line can be scrolled left and right and can be as long as the
current record length. An information line is protected. Once it has been
added to the data, it cannot be referenced.

MSGLINE
The line inserted is a temporary, non-data line. The line command area
contains ==MSG> in high intensity and the data on the line is also in high
intensity. A message line has a data length of 72 characters, regardless of
the data width. Once it has been added to the data, it cannot be referenced.

NOTELINE
The line inserted is a temporary, non-data line. The line command area
shows =NOTE= in high intensity and the data on the line is in low intensity.
A note line has a data length of 72 characters, regardless of the data width.
It cannot be referenced after it is added to the data.

data Specifies that the following data formats can be used:
v Simple string
v Delimited string
v Variable
v Template (< col,string >)
v Merge format (string-1 + string-2, operand + string-2, string-1 + operand)
v Operand:

LINE Data from the line preceding this line.
LINE lptr

Data from the line with the given line pointer (lptr).
MASKLINE

Data from the mask line.
TABSLINE

Data from the tabs line.

Description
This statement is used for adding lines with specific data. Use the INSERT
command for data input.

Return Codes
The following return codes can be issued:
0 Normal completion
4 Data truncated
12 Invalid line number
20 Severe error.

Examples
To add data after line 4 with data from a variable named NEWDAT:
ISREDIT LINE_AFTER 4 = (NEWDAT)

LINE_AFTER

Chapter 11. Edit Macro Commands and Assignment Statements 353

Note: This syntax is preferred over
ISREDIT LINE_AFTER 4 = &NEWDAT

because the variable is not rescanned by either the language processor or
ISPF.

To put a new line that contains the string:
This is the new top line of the data

as the first line of the data set:
ISREDIT LINE_AFTER 0 = "This is the new top line of the data"

To put the contents of the line labeled .START on a new line following the line
labeled .END:
ISREDIT LINE_AFTER .END = LINE .START

To put the contents of the mask line modified by the variable &DATA after the line
whose number is in variable &N:
ISREDIT LINE_AFTER &N = MASKLINE + &DATA

LINE_BEFORE—Add a Line to the Current Data Set
The LINE_BEFORE assignment statement adds a line before a specified line in the
current data set.

Assignment Statement Syntax
ISREDIT LINE_BEFORE lptr = [DATALINE] data

[INFOLINE]
[MSGLINE]
[NOTELINE]

lptr Specifies that a line pointer must be used to identify the line before which
the new line is to be inserted. A line pointer of 0 is invalid. The line
pointer can be either a label or a relative line number.

DATALINE
The line inserted is a data line.

INFOLINE
The line inserted is a temporary, non-data line. The line command area
shows ====== in high intensity and the data on the line is in high intensity,
also. The line can be scrolled left and right and can be as long as the
current record length. An information line is protected. Once it has been
added to the data, it cannot be referenced.

MSGLINE
The line inserted is a temporary, non-data line. The line command area
contains ==MSG> in high intensity and the data on the line is also in high
intensity. A message line has a data length of 72 characters, regardless of
the data width. Once it has been added to the data, it cannot be referenced.

NOTELINE
The line inserted is a temporary, non-data line. The line command area
shows =NOTE= in high intensity and the data on the line is in low intensity.
A note line has a data length of 72 characters, regardless of the data width.
It cannot be referenced once it has been added to the data.

data Specifies that the following data formats can be used:

LINE_AFTER

354 z/OS V1R2.0 ISPF Edit and Edit Macros

v Simple string
v Delimited string
v Variable
v Template (< col,string >)
v Merge format (string-1 + string-2, operand + string-2, string-1 + operand)
v Operand (those allowed follow):

LINE Data from the line following this line.
LINE lptr

Data from the line with the given line pointer (lptr).
MASKLINE

Data from the mask line.
TABSLINE

Data from the tabs line.

Description
The LINE_BEFORE statement is used for adding lines with specific data. Use
INSERT for data input.

Return Codes
The following return codes can be issued:
0 Normal completion
4 Data truncated
12 Invalid line number
20 Severe error.

Examples
To add data before line 4 with data from a variable named NEWDAT:
ISREDIT LINE_BEFORE 4 = (NEWDAT)

Note: This syntax is preferred over
ISREDIT LINE_BEFORE 4 = &NEWDAT

because the variable is not rescanned by either the language processor or
ISPF.

To put the contents of the line labeled .START on a new line preceding the line
labeled .END:
ISREDIT LINE_BEFORE .END = LINE .START

To put the contents of the mask line modified by the variable &DATA before the
line whose number is in variable &N:
ISREDIT LINE_BEFORE &N = MASKLINE + &DATA

LINE_STATUS—Query Source and Change Information for a Line in a
Data Set

The LINE_STATUS assignment statement retrieves the source and change
information for the data line specified by a line pointer, and places it in a variable.
This information indicates how the line was originally added to the data, and how
it has been changed during the edit session.

LINE_BEFORE

Chapter 11. Edit Macro Commands and Assignment Statements 355

Assignment Statement Syntax
ISREDIT (varname) = LINE_STATUS lptr

varname

The name of the variable to contain the status string for the specified line.
This is a 32-character variable containing character 1s and 0s indicating the
following:

Characters 1-7 are ″source″ information.

Character 1 Line is an original record (it existed when the edit session started)

Character 2 Line was created by the Move line command

Character 3 Line was created by the Copy or Repeat line command

Character 4 Line was created by the MOVE primary or macro command

Character 5 Line was created byt the COPY primary or macro command

Character 6 Line was created by the TE line command

Character 7 Line was created by the Insert line command

Characters 8-14 are ″change″ information.

Character 8 Line was changed (one of the following characters will also be set
to show HOW the line was changed)

Character 9 Data on the line was typed over

Character 10 Data was changed by the CHANGE primary command or the
Overlay line command

Character 11 Data was changed by the Column Shift line command [used the (,
((,), or)) command]

Character 12 Data was changed by the Data Shift line command [used the <,
<<, >, or >> command]

Character 13 Data was changed by the TE, TF, or TS line command

Character 14 The line was renumbered

Characters 15-32 are reserved for future use.

lptr Specifies that a line pointer must be used. A line pointer can be a label or
relative line number.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Line number not valid
20 Severe error.

Example
To determine if line number one of your data has changed and to display a
message informing you of its status:
ISREDIT (LINESTAT) = LINE_STATUS 1
If linestat(1) = '1' Then

Say 'Line is an ORIGINAL record'
Else

Say 'Line was created during this edit session'

LINE_STATUS

356 z/OS V1R2.0 ISPF Edit and Edit Macros

If linestat(8) = '1' Then
Say 'Line has been changed'

Else
Say 'Line has not been changed'

LINENUM—Query the Line Number of a Labeled Line
The LINENUM assignment statement retrieves the current relative line number of
a specified label, and places it in a variable.

Assignment Statement Syntax
ISREDIT (varname) = LINENUM label

varname
The name of the variable to contain the line number of the line with the
specified label. The line number is a 6-digit value that is left-padded with
zeros. If the variable is VDEFINEd in character format, it should be
defined with a length of 8. The returned value is left-padded with zeros.
For compatibility with previous releases of ISPF, a length of 6 or 7 is
allowed in cases where no data loss will occur.

label The name of the label for the line whose line number is needed.

Return Codes
The following return codes can be issued:
0 Normal completion
4 Line 0 specified
8 Label specified, but not found (variable set to 0)
12 Invalid line number
20 Severe error.

Description
Once the line number is retrieved and placed in a variable, it can be used in
arithmetic operations. Note that line numbers are relative to the position of the
line: first=1, second=2, and so on. Therefore, the value returned by the LINENUM
assignment statement is not always be correct if lines are added or deleted before
the line number is obtained.

Examples
To determine the number of lines in the data set and set variable &VAR to the last
line number:
ISREDIT (VAR) = LINENUM .ZLAST

That number is 0 if there are no lines.

To set variable &NUM to the line number containing the label .MYLAB:
ISREDIT (NUM) = LINENUM .MYLAB

LOCATE—Locate a Line
The LOCATE macro command scrolls up or down to a specified line. The line is
then displayed as the first line on the panel. There are two forms of LOCATE,
specific and generic.

LINE_STATUS

Chapter 11. Edit Macro Commands and Assignment Statements 357

|
|
|
|
|
|
|

Specific Locate Syntax
The specific form of LOCATE positions a particular line at the top of the panel.
You must specify either a line number or a label.
ISREDIT LOCATE lptr

lptr Specifies that a line pointer must be used for the target. A line pointer can
be a label or a relative line number.

If the line pointer is a label, it must be a label that you have previously
defined or a editor-defined label, such as .ZFIRST or .ZLAST.

Generic Locate Syntax
The generic LOCATE command positions the panel to the first, last, next, or
previous occurrence of a particular kind of line.
ISREDIT LOCATE [FIRST] {CHANGE } [lptr-range]

[LAST] {COMMAND }
[NEXT] {ERROR }
[PREV] {EXCLUDED}

{LABEL }
{SPECIAL }
{INFOLINE}
{MSGLINE }
{NOTELINE}

FIRST Searches from the first line, proceeding forward.

LAST Searches from the last line, proceeding backward.

NEXT Searches from the first line of the page displayed, proceeding forward.

PREV Searches from the first line of the page displayed, proceeding backward.

CHANGE
Searches for a line with a change flag (==CHG>).

COMMAND
Searches for a line with a pending line command.

ERROR
Searches for a line with an error flag (==ERR>).

EXCLUDED
Searches for an excluded line.

LABEL
Searches for a line with a label.

SPECIAL
Searches for any special non-data (temporary) line:
v Bounds line flagged as =BNDS>
v Column identification lines flagged as =COLS>
v Information lines flagged as ======
v Mask lines flagged as =MASK>
v Message lines flagged as ==MSG>
v Note lines flagged as =NOTE=
v Profile lines flagged as =PROF>
v Tabs line flagged as =TABS>.

INFOLINE
Searches for information lines flagged with ======

MSGLINE
Searches for message lines flagged with ==MSG>

LOCATE

358 z/OS V1R2.0 ISPF Edit and Edit Macros

NOTELINE
Searches for note lines flagged with =NOTE=

lptr-range
Specifies that two line pointers are required to specify a range of lines in
which to search. A line pointer can be a label or a relative line number.
Specifying one line pointer is invalid. The defaults are the editor-defined
.ZFIRST and .ZLAST labels.

Note: If you try to locate a line using a label that has not been assigned,
you will receive a return code of 20. To avoid this, use the
LINENUM assignment statement. When using the LINENUM
statement, a return code of 8 will be issued if the label does not
exist.
ISREDIT X = LINENUM .LABEL

Return Codes
The following return codes can be issued:
0 Normal completion
4 Line not located
8 Empty member or data set
20 Severe error.

Examples
To locate the next occurrence of a line with a label:
ISREDIT LOCATE NEXT LABEL

To locate the first occurrence of a special (non-data) line:
ISREDIT LOCATE FIRST SPECIAL

To locate the last excluded line:
ISREDIT LOCATE LAST X

To locate the previous line that contains an unprocessed line command:
ISREDIT LOCATE PREV CMD

To locate the first message line:
ISREDIT LOCATE FIRST MSGLINE

LRECL—Query the Logical Record Length
The LRECL assignment statement returns the maximum space, in bytes, available
for data, COBOL number fields, and sequence number fields.

Assignment Statement Syntax
ISREDIT (varname) = LRECL

varname
The name of a variable to contain the logical record length of the data
being edited. The logical record length is a 3-digit value that is left-padded
with zeros. If the variable is VDEFINEd in character format, it should be
defined with a length of 5. The returned value is left padded with zeros.
For compatibility with previous releases of ISPF/PDF, a length of 3 or 4 is
allowed in cases where no data loss occurs.

LOCATE

Chapter 11. Edit Macro Commands and Assignment Statements 359

Description
The value returned by the LRECL assignment statement includes the sequence
number field and, for fixed-length records, the COBOL number field, if these
number fields are used. For variable-length records, the value returned by LRECL
does not include the 4-byte record descriptor word (RDW).

Use the DATA_WIDTH assignment statement to get the maximum space, in bytes,
available for data.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid command format
20 Severe error.

Example
To check the logical record length of the data and process the data if the logical
record length (LRECL) is 80:
ISREDIT (RECLEN) = LRECL
IF &RECLEN = 80 THEN -

...

MACRO—Identify an Edit Macro
The MACRO macro command identifies a command as a macro.

Macro Command Syntax
ISREDIT MACRO [(var1 [,var2,...])] [PROCESS]

[NOPROCESS]

var1, var2,
The names of the variables that contain parameters, if a macro allows
parameters to be specified. Parameters are parsed and placed into the
named variables in the order in which they are typed. The last variable
contains any remaining parameters. Variables that do not receive a
parameter are set to a null string. A parameter is a simple or quoted string,
separated by blanks or commas. Quotes can be single (') or double ("), but
must be matched at the beginning and end of the string.

PROCESS
Immediately processes all changes and line commands typed at the
keyboard.

NOPROCESS
Processes changes and line commands typed at the keyboard when the
macro completes processing or a PROCESS statement is found.
NOPROCESS must be used if the macro is to use line commands as input
to its processing.

See “PROCESS—Process Line Commands” on page 374 for more
information.

Description
The MACRO macro command is required in all macros. It must be the first
command in a CLIST or REXX macro that is not a CLIST or REXX statement.
Similarly, it also must be the first edit command in a program macro.

LRECL

360 z/OS V1R2.0 ISPF Edit and Edit Macros

Return Codes
The following return codes may be returned:
0 Normal completion
8 No parameters are permitted for this processing
12 Syntax Error
20 Severe error.

Examples
To begin a macro, first accepting a member name and optionally a line number
range to be placed in the variable &PARM:
ISREDIT MACRO (PARM)
ISREDIT COPY AFTER .ZCSR &PARM

To begin a macro, checking parameters before processing panel information, testing
for missing input, excess input, and non-numeric input:
ISREDIT MACRO NOPROCESS (COL,X)
IF &STR(&COL) = &STR() THEN -

ISREDIT (,COL) = DISPLAY_COLS
ELSE -

IF &DATATYPE(&COL) = CHAR THEN -
GOTO MSG

IF &STR(&X) ¬= &STR() THEN -
GOTO MSG

ISREDIT PROCESS

MACRO_LEVEL—Query the Macro Nesting Level
The MACRO_LEVEL assignment statement retrieves the current nesting level of
the macro being run, and places the nesting level in a variable.

Assignment Statement Syntax
ISREDIT (varname) = MACRO_LEVEL

varname
The name of a variable to contain the macro nesting level. The nesting
level is a 3-digit value that is left-padded with zeros.

Description
The nesting level can be any number between 1 (a macro that you start) and 255.
MACRO_LEVEL is used to adjust processing based on whether the macro is
started by you or called by another macro. It is required if labels are to be set for
the starter of this macro. See “LABEL—Set or Query a Line Label” on page 348 for
more information.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid command format
20 Severe error.

Example
To set the label for the caller of the macro at 1 less than the current level:
ISREDIT (NESTLEV) = MACRO_LEVEL
ISREDIT LABEL .ZCSR = .XSTR &EVAL(&NESTLEV -1)

MACRO

Chapter 11. Edit Macro Commands and Assignment Statements 361

MASKLINE—Set or Query the Mask Line
The MASKLINE assignment statement sets or retrieves the value of the mask line,
which controls the display formatting of your input.

Assignment Statement Syntax
ISREDIT (varname) = MASKLINE
ISREDIT MASKLINE = data

varname
The name of a variable containing maskline contents.

data Specifies that the following forms can be used:
v Simple string
v Delimited string
v Variable
v Template (< col,string >)
v Merge format (string-1 + string-2, operand + string-2, string-1 + operand)
v Operand:

LINE lptr
Data from the line with the given line pointer (lptr).

MASKLINE
Data from the mask line.

TABSLINE
Data from the tabs line.

Description
The MASKLINE assignment statement places the mask line contents in a variable
or sets the mask line from a variable. The mask line can contain any characters and
serves to initialize inserted lines to the value of the mask line. See the description
of templates in “Overlays and Templates” on page 104 for more information on the
setting of a mask line.

Be careful not to destroy a DBCS string in the mask line. If shift-out (SO) or
shift-in (SI) characters in a mask line are overlaid through the MASKLINE
statement, the result is unpredictable.

Return Codes
The following return codes can be issued:
0 Normal completion
4 Data truncated
16 Variable data truncated
20 Severe error.

Examples
To set the mask line to place comment delimiters starting at lines 40 and 70:
ISREDIT MASKLINE = <40 '&STR(/*)' 70 '&STR(/*)'>

To set the mask line to blanks:
ISREDIT MASKLINE = " "

MASKLINE

362 z/OS V1R2.0 ISPF Edit and Edit Macros

MEMBER—Query the Current Member Name
The MEMBER assignment statement retrieves the name of the library member
currently being edited, and places it in a variable. If a sequential data set is being
edited, the variable is set to blanks.

Assignment Statement Syntax
ISREDIT (varname) = MEMBER

varname
The name of a variable to contain the name of the library member
currently being edited.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid command format
20 Severe error.

Example
To determine if you are editing a library member with a prefix of MIN:
ISREDIT (MEMNAME) = MEMBER
IF &SUBSTR(1:3,&MEMNAME) = MIN THEN -

....

MEND—End a Macro in the Batch Environment

Note: The MEND command is obsolete.

The MEND macro command ends a macro that is running in the batch
environment. It was required for CLISTs that ran in the batch environment using
the MVS/370 operating system. It is not required for z/OS, but can be used.

Macro Command Syntax
ISREDIT MEND

Return Codes
The following return codes can be issued:
0 Normal completion

MODEL—Copy a Model into the Current Data Set
The model name form of the MODEL macro command copies a specified dialog
development model before or after a specified line.

The class name form of the MODEL macro command changes the model class that
the editor uses to determine the model you want. For more information on edit
models, see Chapter 4. Using Edit Models.

Macro Command Model Name Syntax
ISREDIT MODEL model-name [qualifier] {AFTER } lptr [NOTES]

{BEFORE} [NONOTES]

MEMBER

Chapter 11. Edit Macro Commands and Assignment Statements 363

model-name
The name of the model to be copied, such as VGET for the VGET service
model. This operand can also be one of the options listed on a model
selection panel, such as V1 for the VGET service model. However, to use
these options with the MODEL macro command, you must already know
what they are or else display a model selection panel by using the MODEL
primary command. The MODEL macro command does not display model
selection panels. Refer to ISPF Planning and Customizing for a list of models
and model names.

qualifier
The name of a model on a secondary model selection panel, such as
TBCREATE for the TBCREATE service model. This operand can also be one
of the options listed on a model selection panel, such as G1 for the
TBCREATE service model.

For example, a model selection panel allows you to enter T1 to choose
table models. It then displays another model selection panel for choosing
table models, such as G1 for the TBCREATE service model. Therefore, your
MODEL macro command could use either TABLES or T1 as the model-name
operand and either TBCREATE or G1 as the qualifier operand. The simplest
way would be to use TBCREATE or G1 as the model-name operand and omit
the qualifier operand.

To use options with the MODEL macro command, you must already know
what they are or else display a model selection panel by using the MODEL
primary command. The MODEL macro command does not display model
selection panels. Refer to ISPF ISPF Planning and Customizing for a list of
models and model names.

AFTER
Specifies that the model is to be copied after the line specified by lptr.

BEFORE
Specifies that the model is to be copied before the line specified by lptr.

lptr A line pointer must be used to specify where the model should be copied.
A line pointer can be a label or a relative line number.

NOTES
Explanatory notes appear when a model is copied.

NONOTES
No explanatory notes appear.

Macro Command Class Name Syntax
ISREDIT MODEL CLASS class-name

CLASS
Specifies that the current model class is to be replaced by class-name. The
new class name is used for all models from that point on, until you change
the model class again or end the edit session.

class-name
Specifies the model class for the current edit session. It must be a name on
the Model Classes panel or an allowable abbreviation. The model class
coincides with the type of model, such as REXX, COBOL, or FORTRAN.

Return Codes
The following return codes can be issued:

MODEL

364 z/OS V1R2.0 ISPF Edit and Edit Macros

0 Normal completion
12 Invalid line pointer (lptr)
20 Severe error.

Example
To copy the VGET model at the end of the current data:
ISREDIT MODEL VGET AFTER .ZL

MOVE— Move a Data Set or a Data Set Member
The MOVE macro command specifies a member of the partitioned data set being
edited to be moved into the data being edited.

Macro Command Syntax
ISREDIT MOVE member {AFTER } lptr

(member){BEFORE}
data set name
data.set.name(member)

member
A member of the ISPF library or partitioned data set you are editing.

data set name
A partially or fully qualified data set name. If the data set is partitioned
you must include a member name in parentheses.

AFTER
Specifies that the member is to be moved after the target specified by lptr.

BEFORE
Specifies that the member is to be moved before the target specified by
lptr.

lptr Identifies the target of the move. A line pointer can be a label or a relative
line number. If the line pointer is a label, it can be either a label that you
define or one of the editor-defined labels, such as .ZF and .ZL.

Note: If the member name or data set name is less than 8 characters and the data
set you are editing is partitioned a like-named member is copied. If a
like-named member does not exist, the name is considered to be a partially
qualified data set name.

Description
The member or data set is deleted after the move. For a concatenated sequence of
ISPF libraries, the deletion occurs only if the member was in the first library of the
concatenation sequence.

See “Copying and Moving Data” on page 48 if you need more information.

Return Codes
The following return codes can be issued:

0 Normal completion

8 End of data before last record read or the specified data set is in use

12 Invalid line pointer (lptr); member not found or BLDL error

16 End of data before first record read

MODEL

Chapter 11. Edit Macro Commands and Assignment Statements 365

20 Syntax error (invalid name, incomplete range), or I/O error.

Examples
To move the contents of member ABC after the first line in the current data:
ISREDIT MOVE ABC AFTER .ZF

To move all of data set MOVECOPY.DATA before the line where the cursor is
currently positioned:
ISREDIT MOVE MOVECOPY.DATA BEFORE .ZCSR

NONUMBER—Turn Off Number Mode
The NONUMBER macro command turns off number mode, which controls the
numbering of lines in the current data.

Syntax
ISREDIT NONUMBER

The NONUMBER macro command has no operands.

Description
You can also use the NUMBER OFF macro command to turn off number mode.

When number mode is off, NONUMBER prevents any verification of valid line
numbers, generation of sequence numbers, and the renumbering of lines that
normally occurs when autonum mode is on.

Return Codes
The following return codes can be issued:

0 Normal completion

20 Severe error.

Example
To turn number mode off by using the NONUMBER command:
ISREDIT NONUMBER

NOTES—Set or Query Note Mode
The NOTES macro command sets note mode, which controls whether notes are to
appear when a dialog development model is inserted into the data.

The NOTES assignment statement either sets note mode, or retrieves the setting of
note mode and places it in a variable.

See “MODEL—Copy a Model into the Current Data Set” on page 257 for
information about copying dialog development models.

Macro Command Syntax
ISREDIT NOTES [ON]

[OFF]

MOVE

366 z/OS V1R2.0 ISPF Edit and Edit Macros

ON Displays explanatory notes when a model is copied into the data being
edited.

OFF Does not display explanatory notes.

Assignment Statement Syntax
ISREDIT (varname) = NOTES
ISREDIT NOTES = [ON]

[OFF]

varname
The name of a variable to contain the value of note mode, either ON or
OFF.

ON Same as macro command syntax.

OFF Same as macro command syntax.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Examples
To set note mode off:
ISREDIT NOTES = OFF

To store the value of note mode in variable &NOTEMODE:
ISREDIT (NOTEMODE) = NOTES

NULLS—Set or Query Nulls Mode
The NULLS macro command sets nulls mode, which determines whether trailing
blanks in each data field are written to the panel as blanks or nulls.

The NULLS assignment statement either sets nulls mode or retrieves the setting of
nulls mode and places it in a variable.

Macro Command Syntax
ISREDIT NULLS [ON STD]

[ON ALL]
[OFF]

ON STD
Specifies that in fields that contain any blank trailing space, the space is to
be written as one blank followed by nulls. If the field is entirely empty, it
is written as all blanks.

ON ALL
Specifies that all trailing blanks and all-blank fields are written as nulls.

OFF Specifies that trailing blanks in each data field are written as blanks.

Assignment Statement Syntax
ISREDIT (var1,var2) = NULLS
ISREDIT NULLS = [ON STD]

[ON ALL]
[OFF]

NOTES

Chapter 11. Edit Macro Commands and Assignment Statements 367

var1 The name of a variable to contain either ON or OFF.

var2 The name of a variable to contain ALL, STD, or blanks.

ON STD
Same as macro command syntax.

ON ALL
Same as macro command syntax.

OFF Same as macro command syntax.

Description
The term data field normally refers to the 72 characters of data on each line. Using
hardware tabs, however, you can split each line into multiple fields. See
“TABS—Define Tabs” on page 288 for more details.

Blank characters (X'40') and null characters (X'00') both appear as blanks. When
you use the I (insert) line command, the data entry area appears as blanks for
NULLS ON STD and as nulls for NULLS ON ALL.

Trailing nulls simplify use of the Ins (insert) key on the IBM 3270 keyboard. You
can use this key to insert characters on a line if the line contains trailing nulls.

Besides using NULLS, you can create nulls at the end of a line by using the Erase
EOF or Del (delete) key. Null characters are never stored in the data; they are
always converted to blanks.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Examples
To set nulls mode on with blank trailing space written as one blank followed by
nulls and empty fields written as all blanks:
ISREDIT NULLS = ON STD

To set nulls mode off and thus have trailing blanks in each data field:
ISREDIT NULLS = OFF

NUMBER—Set or Query Number Mode
The NUMBER macro command sets number mode, which controls the numbering
of lines in the current data.

The NUMBER assignment statement either sets number mode, or retrieves the
setting of number mode and places it in variables.

Macro Command Syntax
ISREDIT NUMBER [ON] [STD] [DISPLAY]

[OFF] [COBOL]
[STD COBOL]
[NOSTD]
[NOCOBOL]
[NOSTD NOCOBOL]

NULLS

368 z/OS V1R2.0 ISPF Edit and Edit Macros

ON Automatically verifies that all lines have valid numbers in ascending
sequence and renumbers any lines that are either unnumbered or out of
sequence. You can also use the RENUM command to turn number mode
on and renumber lines.

The editor interprets the STD, COBOL, and DISPLAY operands only when
number mode is turned on.

OFF Turns number mode off. You can also use the NONUMBER command to
turn number mode off.

STD Numbers the data in the standard sequence field. This is the default for all
non-COBOL data set types.

COBOL
Numbers the data in the COBOL field. This is the default for all COBOL
data set types.

Note: The NUMBER ON COBOL mode is not supported for formatted
data sets.

Attention: If number mode is off, make sure the first 6 columns of your
data set are blank before using either the NUMBER ON COBOL or
NUMBER ON STD COBOL command. Otherwise, the data in these
columns is replaced by the COBOL sequence numbers. If that happens and
if edit recovery or SETUNDO is on, you can use the UNDO command to
recover the data. You can also use CANCEL at any time to end the edit
session without saving the data.

STD COBOL
Numbers the data in both fields.

If both STD and COBOL numbers are generated, the STD number is
determined and then used as the COBOL number. The COBOL numbers
can be out of sequence if the COBOL and STD fields were not
synchronized. Use RENUM to force synchronization.

NOSTD
Turns standard number mode off.

NOCOBOL
Turns COBOL number mode off.

NOSTD NOCOBOL
Turns both the standard number mode and COBOL number mode off.

DISPLAY
Causes the width of the data window to include the sequence number
fields. Otherwise, the width of the window does not include the sequence
number fields. When you display a data set with a logical record length of
80 and STD numbering, the sequence numbers are not shown unless you
are using a 3278 Model 5 terminal, which displays 132 characters.
Automatic left or right scrolling is performed, if required, so that the
leftmost column of the data window is the first column displayed.

Assignment Statement Syntax
ISREDIT (var1,var2) = NUMBER
ISREDIT NUMBER = [ON] [STD] [DISPLAY]

[OFF] [COBOL]

NUMBER

Chapter 11. Edit Macro Commands and Assignment Statements 369

[STD COBOL]
[NOSTD]
[NOCOBOL]
[NOSTD NOCOBOL]

var1 The name of a variable to contain either ON or OFF.

var2 The name of a variable to contain one of the eight combinations in the
following list:

NOSTD NOCOBOL DISPLAY
STD NOCOBOL DISPLAY
NOSTD COBOL DISPLAY
STD COBOL DISPLAY

NOSTD NOCOBOL NODISPL
STD NOCOBOL NODISPL
NOSTD COBOL NODISPL
STD COBOL NODISPL

The value STD, COBOL, or DISPLAY can be placed in var2, even when
var1 is set to off. This allows the macro to save and restore number mode.
It also allows the macro to set number mode off, while specifying defaults
to be used when number mode is changed to on.

ON Same as for macro command syntax.

OFF Same as for macro command syntax.

STD Same as for macro command syntax.

COBOL
Same as for macro command syntax.

NOSTD
Turns standard number mode off.

NOCOBOL
Turns COBOL number mode off.

NOSTD NOCOBOL
Turns both the standard number mode and COBOL number mode off.

STD COBOL
Same as for macro command syntax.

DISPLAY
Same as for macro command syntax.

Description
When number mode is on, NUMBER verifies that all lines have valid numbers in
ascending sequence. It renumbers any lines that are either unnumbered or out of
sequence, but it does not otherwise change existing numbers.

In number mode, the editor automatically generates sequence numbers in the data
for new lines that are created when data is copied or inserted. The editor also
automatically renumbers the data when it is saved if autonum mode is in effect.

If the number overlays the shift-in (SI) or shift-out (SO) characters, the double-byte
characters are displayed incorrectly and results are unpredictable.

NUMBER

370 z/OS V1R2.0 ISPF Edit and Edit Macros

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Example
To save the current value of number mode, set number mode off for processing,
and then restore the value of number mode:
ISREDIT (STAT,VALUE) = NUMBER
ISREDIT NUMBER OFF

...
ISREDIT NUMBER = (STAT VALUE)

PACK—Set or Query Pack Mode
The PACK macro command sets pack mode, which controls whether the data is
stored in packed format.

The PACK assignment statement either sets pack mode, or retrieves the setting of
pack mode and places it in a variable.

The PACK command saves the pack mode setting in the edit profile. See “Packing
Data” on page 17 for more information about packing data.

Macro Command Syntax
ISREDIT PACK [ON]

[OFF]

ON Saves data in packed format.

OFF Saves data in unpacked (standard) format.

If you change pack mode, data is written when an END command is issued.

Assignment Statement Syntax
ISREDIT (varname) = PACK
ISREDIT PACK = [ON]

[OFF]

varname
The name of a variable to contain the setting of pack mode, either ON or
OFF.

ON Same as macro command syntax.

OFF Same as macro command syntax.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Example
To set pack mode off:
ISREDIT PACK OFF

NUMBER

Chapter 11. Edit Macro Commands and Assignment Statements 371

PASTE—Move or Copy Lines from Clipboard
The PASTE macro command moves or copies lines from a clipboard into an edit
session.

Syntax
ISREDIT PASTE [AFTER] lptr [clipboardname]

[BEFORE][KEEP]

clipboardname
The name of the clipboard to use. If you omit this parameter, the ISPF
default clipboard (named DEFAULT) is used. You can define up to ten
additional clipboards. The size of the clipboards and number of clipboards
might be limited by installation defaults.

BEFORE
The destination of the data that is being transferred from the clipboard.
BEFORE copies the data before the specified label (lptr).

AFTER
The destination of the data that is being transferred from the clipboard.
AFTER copies the data after the specified label (lptr).

KEEP Records are copied and not removed from the clipboard. If you omit this
keyword, the records are removed from the clipboard.

Description
PASTE copies or moves lines from a specified clipboard to the current edit session.
If lines in the clipboard are longer than the lines in the edit session, they are
truncated.

The portion of the line that is saved in the clipboard is only the data portion of the
line. Line numbers are not saved. If the data was CUT from a data set that had
sequence numbers and is PASTEd into an edit session without sequence numbers,
or if it was CUT from a data set without sequence numbers and PASTEd into a
session with sequence numbers, some shifting of data is likely to occur.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Parameter error. Clipboard is empty or does not exist.
20 Severe error.

Examples
To paste data from the default clipboard to the line after the last line in the edit
session:
ISREDIT PASTE AFTER .ZLAST DELETE

To paste data from the default clipboard to the line after the first line in the edit
session, without clearing the contents of the clipboard:
ISREDIT PASTE AFTER .ZFIRST KEEP

PASTE

372 z/OS V1R2.0 ISPF Edit and Edit Macros

|

PRESERVE—Enable Saving of Trailing Blanks
The PRESERVE macro command enables or disables the saving of trailing blanks
in the editor. This enables you to override the setting for the field on the edit entry
panel called Preserve VB record length.

Macro Command Syntax
ISREDIT PRESERVE [ON]

[OFF]

ON The editor saves all trailing blanks in the record.

OFF Turns truncation on. ISPF removes trailing blanks when saving variable
length files. If a line is empty ISPF saves 1 blank.

Assignment Statement Syntax
ISREDIT (varname) = PRESERVE
ISREDIT PRESERVE = [ON | OFF]

varname
The name of a variable to contain the setting of PRESERVE mode, either
ON or OFF.

ON Same as macro command syntax.

OFF Same as macro command syntax.

Description
PRESERVE ON causes the editor to save trailing blanks for variable length files.
The number of blanks saved for a particular record is determined by one of the
following:
v the original record length of the record when it was read in to the editor
v the number of blanks required to pad the record length specified by the

SAVE_LENGTH edit macro command
v the length of the record that was saved on disk during a previous SAVE request

in the same edit session.

PRESERVE OFF causes the editor to truncate trailing blanks. If a line is empty ISPF
saves 1 blank.

Use of the PRESERVE command does not prevent the editor from working on data
past the specified record length. The length set and returned by the PRESERVE
command is only used when the data is written and does not affect the operation
of other edit functions.

Return Codes
The following return codes can be issued:
0 Normal completion
6 Record format is not variable.
16 Error setting variable.
20 Severe error.

Examples
To save the value of the PRESERVE mode in variable &TRMODE:
ISREDIT (TRMODE) = PRESERVE

PRESERVE

Chapter 11. Edit Macro Commands and Assignment Statements 373

To enable the editor to remove trailing blanks when the data is saved:
ISREDIT PRESERVE OFF

PROCESS—Process Line Commands
The PROCESS macro command allows the macro to control when line commands
or data changes typed at the keyboard are processed.

Macro Command Syntax
ISREDIT PROCESS [DEST] [RANGE cmd1 [cmd2]]

DEST Specifies that the macro can capture an A (after) or a B (before) line
command that you enter. The .ZDEST label is set to the line preceding the
insertion point. If A or B is not entered, .ZDEST points to the last line in
the data.

RANGE
Must be followed by the names of one or two line commands, either of
which you can enter. Use the RANGE_CMD assignment statement to
return the value of the line command entered. This allows the macro to
define and then capture a line command that you enter. It can also modify
its processing based on which of the two commands was entered.

cmd1 and cmd2
Specifies one or two line command names, which can be 1 to 6 characters;
however, if the name is 6 characters long it cannot be used as a block
format command (to specify multiple lines) by doubling the last character.
The name can contain any alphabetic or special character except blank,
hyphen (-), or apostrophe ('). It cannot contain any numeric characters.

The .ZFRANGE label is set to the first line identified by the line command
that you have entered, and .ZLRANGE is set to the last line. They can refer
to the same line. If the expected RANGE line command was not entered,
.ZFRANGE points to the first line in the data and .ZLRANGE points to the
last line in the data.

Description
If a line is retrieved before the PROCESS macro command is called, changes made
to this line will not be seen. The DEST and RANGE operands allow the macro to
identify the line commands that you can enter as additional input to the macro.

This command cannot be specified without first coding the MACRO command
with a NOPROCESS operand.

For more information about using the PROCESS command, see “Using the
PROCESS Command and Operand” on page 114.

Return Codes
The following return codes can be issued:

0 Normal completion.

4 Range expected by macro, but you did not specify it; defaults set.

8 Destination expected by macro, but you did not specify it; defaults set.

12 Both range and destination expected by macro, but you did not specify
them; defaults set.

PRESERVE

374 z/OS V1R2.0 ISPF Edit and Edit Macros

16 You entered incomplete or conflicting line commands.

20 Severe error.

Note: ISPF does not consider a return code of 12 from the PROCESS edit macro
command an error and does not terminate a macro that receives a return
code of 12 from the PROCESS edit macro.

Examples
To set up the macro to process the line commands * and # (defined by the macro
writer):
ISREDIT MACRO NOPROCESS
ISPEXEC CONTROL ERRORS RETURN
ISREDIT PROCESS RANGE * #
IF &LASTCC >= 16 THEN EXIT CODE(&LASTCC)
ISREDIT (CMD) = RANGE_CMD
ISREDIT (FIRST) = LINENUM .ZFRANGE
ISREDIT (LAST) = LINENUM .ZLRANGE
IF &STR(&CMD) = &STR(*) THEN -

...

To place data depending on the location of the A (after) or B (before) line
command:
ISREDIT MACRO NOPROCESS
ISREDIT PROCESS DEST
ISREDIT LINE_AFTER .ZDEST = "&DATA"

To allow processing of the A and B destination line commands and the
specification of a range by using the * line command (defined by the macro writer):
ISREDIT MACRO NOPROCESS
ISREDIT PROCESS DEST RANGE *

See “Using the PROCESS Command and Operand” on page 114.

PROFILE—Set or Query the Current Profile
The control form of the PROFILE macro command appears your current edit
profile, defines a new edit profile, or switches to a different edit profile.

The lock form of the PROFILE macro command locks or unlocks the current edit
profile.

The PROFILE assignment statement retrieves the name and lock status of the
current edit profile and stores those values in variables.

Macro Command Profile Control Syntax
ISREDIT PROFILE [name] [number]

name The profile name. It can consist of up to 8 alphanumeric characters, the
first of which must be alphabetic. The edit profile table is searched for an
existing entry with the same name. That profile is then read and used. If
one is not found, a new entry is created in the profile table.

If you omit this operand, the current edit profile is used.

number
The number of lines, from 0 through 8, of profile data to be displayed.
When you type 0 as the number, no profile data is displayed. When you

PROCESS

Chapter 11. Edit Macro Commands and Assignment Statements 375

omit the number operand, the profile modes appear; the =MASK> and
=TABS> lines are displayed if they contain data, followed by the =COLS> line.

The =BNDS> line does not appear if it contains the default boundary
positions. It does appear when the bounds are set to something other than
the default, and no ’number’ parameter is entered into the PROFILE
command.

For more information about displaying and defining a profile, see “Displaying or
Defining an Edit Profile” on page 19.

Macro Command Profile Lock Syntax
ISREDIT PROFILE {LOCK | UNLOCK}

LOCK Specifies that the current values in the profile are saved in the edit profile
table and are not modified until the profile is unlocked. The current copy
of the profile can be changed, either because of commands you enter that
modify profile values (BOUNDS and NUMBER, for example) or because of
differences in the data from the current profile settings. However, unless
you unlock the edit profile, the saved values replace the changes when you
end the edit session.

Caps, number, stats, and pack mode are automatically changed to fit the
data. These changes occur when the data is first read or when data is
copied into the data set. Message lines (==MSG>) are inserted in the data set
to show you which changes occurred.

Note: To force caps, number, stats, or pack mode to a particular setting,
use an initial macro. Be aware, however, that if you set number
mode on, data may be overlaid.

UNLOCK
Specifies that the editor saves changes to profile values.

See “Locking an Edit Profile” on page 21 for more information about locking and
unlocking the profile.

Macro Command Profile Reset Syntax
ISREDIT PROFILE RESET

RESET
Specifies that the ZEDFAULT profile is to be removed and the site-wide
configuration for new edit profiles is to be used.

See “Locking an Edit Profile” on page 21 for more information about locking and
unlocking the profile.

Assignment Statement Syntax
ISREDIT (var1,var2) = PROFILE

var1 The name of a variable to contain the name of the current edit profile.

var2 The name of a variable to contain the profile status, LOCK or UNLOCK.

PROFILE

376 z/OS V1R2.0 ISPF Edit and Edit Macros

Description
Profile names cannot be set by an assignment statement. Instead, use PROFILE to
change a profile name, thereby changing the current edit profile and the edit
profile values.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Example
To check the lock status of the profile and perform processing if the profile is
locked:
ISREDIT (,STATUS) = PROFILE
IF &STATUS = LOCK THEN -

...

RANGE_CMD—Query a Command That You Entered
The RANGE_CMD assignment statement identifies the name of a line command
entered from the keyboard and processed by a macro.

Assignment Statement Syntax
ISREDIT (varname) = RANGE_CMD

varname
The name of a variable to contain the line command that you entered.

Description
The macro must first issue a PROCESS command to identify all line commands to
be processed by this macro. A particular line command within a range can be
found by using the RANGE_CMD. For instance, if the following PROCESS
command is issued by a macro:
PROCESS RANGE Q $

The RANGE_CMD statement returns either a Q or a $. If a range such as Q5 is
entered, only Q is returned.

Return Codes
The following return codes can be issued:
0 Normal completion
4 Line command not set
8 Line command setting not acceptable
20 Severe error.

Example
To determine which line command (* or #) you entered and to process the line
command (defined by the macro writer):
ISREDIT MACRO NOPROCESS
ISREDIT PROCESS RANGE * #
ISREDIT (CMD) = RANGE_CMD

PROFILE

Chapter 11. Edit Macro Commands and Assignment Statements 377

IF &STR(&CMD) = &STR(*) THEN -
...

ELSE IF &STR(&CMD) = &STR(#) THEN -
.....

RCHANGE—Repeat a Change
The RCHANGE command repeats the change requested by the most recent
CHANGE command.

Macro Command Syntax
ISREDIT RCHANGE

Description
You can use this command to repeatedly change other occurrences of the search
string. After a string NOT FOUND message appears, the next RCHANGE issued starts
at the first line of the current range for a forward search (FIRST or NEXT specified)
or the last line of the current range for a backward search (LAST or PREV
specified).

Return Codes
The following return codes can be issued:

0 Normal completion

4 String not found

8 Change error (string-2 longer than string-1 and substitution was not
performed on at least one change)

12 Syntax error

20 Severe error.

Example
To perform a single-line change and then repeat the change from the top if the
string was not found:
ISREDIT CHANGE C'. the' C'. The' 1 8
IF &LASTCC = 4 THEN—

ISREDIT RCHANGE

RECFM—Query the Record Format
The RECFM assignment statement retrieves the record format of the data set being
edited, and places the value in a variable.

Assignment Statement Syntax
ISREDIT (var1,var2) = RECFM

var1 The name of a variable to contain the type of record format of the data
being edited, either F or V:

F Fixed-length records.

V Variable-length records.

var2 The name of a variable to contain the remaining record format information
of the data being edited, in the combination of M, A, S, BM, BA, BS, BSM,
or BSA:

RANGE_CMD

378 z/OS V1R2.0 ISPF Edit and Edit Macros

B Blocked records.

S Standard or spanned records.

M Machine print control character records.

A ASA print control character records.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Example
To place the type of record format in variable RECFM1 and then use either the
logical data width (for a fixed data set) or the right display column (for a variable
data set):
ISREDIT (RECFM1) = RECFM
IF &RECFM1 = F THEN -

ISREDIT (WIDTH) = DATA_WIDTH
ELSE -

ISREDIT (,WIDTH) = DISPLAY_COLS

To place the remaining record format information in variable RECFM2:
ISREDIT (,RECFM2) = RECFM

To place the type of record format information in variable RECFM1, and the
remaining record format information in variable RECFM2:
ISREDIT (RECFM1,RECFM2) = RECFM

RECOVERY—Set or Query Recovery Mode
The RECOVERY macro command sets edit recovery mode, which allows you to
recover data after a system failure or power outage.

The RECOVERY assignment statement either sets edit recovery mode, or retrieves
the edit recovery mode setting and places it in a variable.

Macro Command Syntax
ISREDIT RECOVERY [ON [SUSP]]

[OFF [WARN]]
[OFF NOWARN]

ON The system creates and updates a recovery data set for each change
thereafter.

OFF The system does not create and update a recovery set.

WARN
This operand no longer has a practical function, due to a software change.
However, the primary command continues to accept the operand for
compatibility reasons.

NOWARN
This operand no longer has a practical function, due to a software change.
However, the primary command continues to accept the operand for
compatibility reasons.

SUSP This operand, when specified with the ON operand has no function. It

RECFM

Chapter 11. Edit Macro Commands and Assignment Statements 379

allows existing macros which save and restore the recovery state to
continue working. When SUSP is specified by itself, it functions like the
ON operand.

See “Edit Recovery” on page 44 for more information about edit recovery.

Assignment Statement Syntax
ISREDIT (var1, var2) = RECOVERY
ISREDIT RECOVERY = [ON [SUSP]]

[OFF [WARN]]
[OFF NOWARN]

var1 The name of a variable to contain the setting of recovery mode, either ON
or OFF.

var2 The name of a variable that contains the warning setting, either WARN,
NOWARN (when RECOVERY is OFF), or blank or SUSP (when
RECOVERY is ON).

ON The system creates and updates a recovery data set for each change
thereafter.

OFF The system does not create and update a recovery set.

WARN
This operand no longer has a practical function, due to a software change.
However, the primary command continues to accept the operand for
compatibility reasons.

NOWARN
This operand no longer has a practical function, due to a software change.
However, the primary command continues to accept the operand for
compatibility reasons.

SUSP This value indicates that recovery is ON, but that it is suspended due to a
previous error.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Examples
To save the value of recovery mode in variable &RECOV:
ISREDIT (RECOV) = RECOVERY

To set recovery mode OFF:
ISREDIT RECOVERY = OFF

RENUM—Renumber Data Set Lines
The RENUM macro command immediately turns on number mode and renumbers
all lines, starting with number 100 and incrementing by 100. For any members
exceeding 10 000 lines, the increment would be less than 100.

RECOVERY

380 z/OS V1R2.0 ISPF Edit and Edit Macros

Macro Command Syntax
ISREDIT RENUM [ON] [STD] [DISPLAY]

[COBOL]
[STD COBOL]

ON Automatically verifies that all lines have valid numbers in ascending
sequence and renumbers any lines that are either unnumbered or out of
sequence. It also turns number mode on and renumbers lines.

The STD, COBOL, and DISPLAY operands are interpreted only when
number mode is turned on.

STD Numbers the data in the standard sequence field. This is the default for all
non-COBOL data set types.

COBOL
Numbers the data in the COBOL field. This is the default for all COBOL
data set types.

STD COBOL
Numbers the data in both fields.

If both STD and COBOL numbers are being generated, the STD number is
determined and then used as the COBOL number. This can result in
COBOL numbers that are out of sequence if the COBOL and STD fields
were not synchronized. Use RENUM to force synchronization.

DISPLAY
Causes the width of the data window to include the sequence number
fields. Otherwise, the width of the window does not include the sequence
number fields. When you display a data set with a logical record length of
80 and STD numbering, the sequence numbers are not shown unless you
are using a 3278 Model 5 terminal, which displays 132 characters. The
editor automatically scrolls left or right, if required, so that the leftmost
column of the data window is the first column displayed.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Examples
To renumber all data lines with standard numbering:
ISREDIT RENUM

ON and STD are the default operands.

To renumber all data lines with standard and COBOL numbering:
ISREDIT RENUM STD COBOL

To renumber all data lines with COBOL numbering, bringing the sequence
numbers within the data window:
ISREDIT RENUM COBOL DISPLAY

To turn sequence numbers off:
ISREDIT RENUM OFF

RENUM

Chapter 11. Edit Macro Commands and Assignment Statements 381

REPLACE—Replace a Data Set or Data Set Member
The REPLACE macro command adds or replaces data in a member of the
partitioned data set that you are editing, in a member of another partitioned data
set, or in a sequential data set.

Macro Command Syntax
ISREDIT REPLACE member lptr-range
ISREDIT REPLACE (member) lptr-range
ISREDIT REPLACE dataset lptr-range
ISREDIT REPLACE dataset(member) lptr-range

member
The name of the member to be replaced in the partitioned data set
currently being edited. If a name of eight or fewer characters is specified
and it could be a member name or a data set name, REPLACE searches for
a membe name first. If no member name is found, then the name is used
as a data set. If the member does not exist, the editor creates it. If you are
using a concatenated sequence of libraries, the member is always written
to the first library in the sequence.

dataset
The name of a sequential data set that is to be replaced. The data set name
can be fully or partially qualified.

dataset(member)
The name of a different partitioned data set and member name to be
replaced in the partitioned data set. The data set name can be fully or
partially qualified.

lptr-range
Two line pointers that are required to specify the range of lines in the
current member that replace data in the other member. A line pointer can
be a label or a relative line number. Specifying one line pointer is incorrect.

Return Codes
The following return codes can be issued:

0 Normal completion

8 Member in use

12 Invalid line pointer

20 Syntax error (invalid name, incomplete line pointer value), or I/O error.

Example
To replace member MEM1 with the first 10 lines of the current data:
ISREDIT REPLACE MEM1 1 10

RESET—Reset the Data Display
The RESET macro command can restore line numbers in the line command area
when those line numbers have been replaced by labels, pending line commands,
error flags, and change flags. However, to reset any pending line commands, you
must have specified the NOPROCESS operand in the MACRO command. RESET
can also delete special lines from the display, redisplay excluded lines, and
temporarily disable the highlighting of FIND strings.

REPLACE

382 z/OS V1R2.0 ISPF Edit and Edit Macros

Macro Command Syntax
ISREDIT RESET [CHANGE] [lptr-range]

[COMMAND]
[ERROR]
[EXCLUDED]
[FIND]
[LABEL]
[SPECIAL]

You can type the operands in any order. If you do not specify any operands,
RESET processes all operands except LABEL.

CHANGE
Removes ==CHG> flags from the line command area.

COMMAND
Removes any pending line commands from the line command area.

ERROR
Removes ==ERR> flags from the line command area.

EXCLUDED
Redisplays any excluded line.

FIND Turns off highlighting of FIND strings until the next FIND, RFIND,
CHANGE, or RCHANGE command. However, SEEK and EXCLUDE do
not return the highlighting of FIND strings in this manner.

RESET with no operands has the same effect on highlighted FIND strings
as RESET FIND.

LABEL
Removes labels from the line command area.

SPECIAL
Deletes any temporary line from the panel:
v Bounds line flagged as =BNDS>
v Column identification lines flagged with =COLS>
v Information lines flagged with ======
v Mask lines flagged as =MASK>
v Message lines flagged as ==MSG>
v Note lines flagged with =NOTE=
v Profile lines flagged as =PROF>
v Tabs line flagged as =TABS>.

lptr-range
Specifies that two line pointers are required to specify a range of lines to
be reset. A line pointer can be a label or a relative line number. Specifying
one line pointer is incorrect. The defaults are the editor-defined .ZFIRST
and .ZLAST labels.

Description
RESET scans every line of data for conditions to be reset. If you want to delete a
small number of special lines, you can get faster response time if you use the D
(delete) line command.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

RESET

Chapter 11. Edit Macro Commands and Assignment Statements 383

Examples
To remove all change flags from the current data:
ISREDIT RESET CHANGE

To remove all error flags from the current data:
ISREDIT RESET ERROR

To redisplay all excluded lines between the .START and .STOP labels:
ISREDIT RESET EXCLUDED .START .STOP

To remove all labels from the current data between and including the .START and
.STOP labels:
ISREDIT RESET LABEL .START .STOP

To remove all special lines from the current data between lines 100 and 200:
ISREDIT RESET SPECIAL 100 200

RFIND—Repeat Find
The RFIND macro command locates the search string defined by the most recent
SEEK, FIND, or CHANGE command, or excludes a line containing the search
string defined by the previous EXCLUDE command.

The RFIND command can be used repeatedly to find other occurrences of the
search string. After a string NOT FOUND message appears, the next RFIND issued
starts at the first line of the current range for a forward search (FIRST or NEXT
specified), or the last line of the current range for a backward search (LAST or
PREV specified).

Macro Command Syntax
ISREDIT RFIND

Return Codes
The following return codes can be issued:
0 Normal completion
4 String not found
12 Syntax error
20 Severe error (string not defined).

Example
To find a character string, process it, and then repeat the operation for the rest of
the data:
ISREDIT FIND FIRST C'. the'
SET RETCODE = &LASTCC;
DO WHILE &RETCODE = 0

...

ISREDIT RFIND
SET RETCODE = &LASTCC;

END

RESET

384 z/OS V1R2.0 ISPF Edit and Edit Macros

RIGHT—Scroll Right
The RIGHT macro command scrolls data to the right of the current panel position.

Macro Command Syntax
ISREDIT RIGHT amt

amt The scroll amount, the number of columns (0 - 9999) to scroll, or one of the
following operands:

MAX Displays the last panel of data to the right.

HALF Displays the next half-panel of data to the right.

PAGE Displays the next full panel of data to the right.

CURSOR
Scrolls until the column on which the cursor is located becomes the
first data column on the panel.

DATA Scrolls until the last column on the current panel of data becomes
the first column on the next panel of data.

Description
The editor stops scrolling when it reaches the current BOUNDS setting. For
example, if the right bound is position 100, and positions 9 to 80 are displayed,
issuing ISREDIT RIGHT 100 leaves positions 29 to 100 being displayed, not
positions 109 to 180.

To scroll to the right using the panel position when the macro was issued, use
USER_STATE assignment statements to save and then restore the panel position
operands.

If you define a macro named RIGHT, it overrides RIGHT when used from another
macro, but has no effect for you. RIGHT does not change the cursor position and
cannot be used in an initial macro. See “BOUNDS—Set or Query the Edit
Boundaries” on page 310 and “DISPLAY_COLS—Query Display Columns” on
page 331 for further information.

Return Codes
The following return codes can be issued:
0 Normal completion
4 No visible lines
8 No data to display
12 Amount not specified
20 Severe error.

Example
To scroll the display to the right by the number of columns specified in variable
&RCOL:
ISREDIT RIGHT &RCOL

RMACRO—Set or Query the Recovery Macro
The RMACRO macro command sets the name of the recovery macro.

RIGHT

Chapter 11. Edit Macro Commands and Assignment Statements 385

The RMACRO assignment statement sets or retrieves the name of the recovery
macro set in this edit session.

See “Recovery Macros” on page 115 for more information.

Macro Command Syntax
ISREDIT RMACRO {name | NONE}

name The name of the recovery macro to be run. The name can be preceded by
an exclamation point (!) to show that it is a program macro.

NONE
The name to prevent a recovery macro from being run; conversely, a value
of NONE is returned when no recovery macro has been specified.

Assignment Statement Syntax
ISREDIT (varname) = RMACRO
ISREDIT RMACRO = {name | NONE}

varname
The name of a variable to contain the name of the recovery macro.

name Same as macro command syntax.

NONE
Same as macro command syntax.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid name specified
20 Severe error.

Example
To set the RMACRO name from the variable &RMAC:
ISREDIT RMACRO = &RMAC

SAVE—Save the Current Data
The SAVE macro command stores the current data on disk. Generally, you do not
need to use SAVE if recovery mode is on. See the DATA_CHANGED, AUTOSAVE,
CANCEL, and END commands for more information about saving data.

Macro Command Syntax
ISREDIT SAVE

Description
The SAVE command writes the data to the same data set from which it was
retrieved unless you specified a concatenated sequence of partitioned data sets on
the Edit - Entry panel. In that case, the data is saved in the first library in the
concatenation sequence, regardless of which library it came from. For a sequential
data set, the complete data set is rewritten. For a partitioned data set, the member
is rewritten with the same member name. If stats mode is on, the library statistics
for the member are automatically updated.

RMACRO

386 z/OS V1R2.0 ISPF Edit and Edit Macros

If both number mode and autonum mode are on, the data is automatically
renumbered before it is saved.

Return Codes
The following return codes can be issued:
0 Normal completion
4 New member saved
12 Data not saved; not enough PDS space or directory space
20 Severe error.

Example
To check autosave mode and, if it is set to OFF, ensure that changes are saved:
ISREDIT (VAR) = AUTOSAVE
IF &VAR = OFF THEN -

ISREDIT SAVE

SAVE_LENGTH—Set or Query Length for Variable Length Data
The SAVE_LENGTH macro command sets or queries the length to be used to save
each record in a variable length file. It does not enable you to truncate the
non-blank portion of a record, but it does enable you to extend a record. When
records are written to disk, they are padded on the end with blanks as needed.

SAVE_LENGTH is a macro command only. It cannot be used as an edit primary
command.

Assignment Statement Syntax
ISREDIT (varname) = SAVE_LENGTH .lptr
ISREDIT SAVE_LENGTH .lptr = value

Description
You can use the SAVE_LENGTH macro command to set or query the minimum
length that is used to store an individual record in a variable length data set.

When setting a length, the length is automatically adjusted to include the
non-blank portion of the line.

When retrieving the length, the number returned reflects the line length that is
used to save the line if the save is done immediately. The length is the maximum
of either: the length of the nonblank portion of the line and the length set by a
previous SAVE_LENGTH request, OR the length of the nonblank portion of the
line and the original line length.

You can use the SAVE_LENGTH command in edit macros to define line commands
to prompt the user for final record lengths or to check the record length. You might
also use it to substitute a visible character for trailing blanks to make editing
easier.

Use of the SAVE_LENGTH command does not prevent the editor from working on
data past the specified record length. The length set and returned by the
SAVE_LENGTH command is only used when the data is written and does not
affect the operation of any other edit functions.

SAVE

Chapter 11. Edit Macro Commands and Assignment Statements 387

Return Codes
The following return codes can be issued:
0 Normal completion
4 Value supplied on set call was out of range. If the supplied length was too

great, it is adjusted to equal the maximum record length. Otherwise, the
length was adjusted to the length of the nonblank data portion of the
record.

6 Record format is not variable. Any value on an assignment request is
ignored.

16 Error setting variable.
20 Severe error.

Examples
To save the number of characters that are saved for the last line in the file when
PRESERVE OFF is active:
ISREDIT (NCHARS) = SAVE_LENGTH .ZLAST

To set the minimum line length for the last line in the file and to set PRESERVE
ON active:
ISREDIT SAVE_LENGTH .ZLAST = 74

Another edit macro sample using the SAVE_LENGTH command can be found in
the ISRSETLN member of the ISPF EXEC library.

SCAN—Set Command Scan Mode
The SCAN macro command sets scan mode, which controls the automatic
replacement of variables in command lines passed to the editor.

The SCAN assignment statement either sets the value of scan mode (for variable
substitution), or retrieves the value of scan mode and places it in a variable.

Macro Command Syntax
ISREDIT SCAN [ON]

[OFF]

ON Specifies that the editor automatically replaces variables in command lines.

OFF Specifies that the editor does not automatically replace variables.

If mode is omitted, the default is ON. Scan mode is initialized to ON when
a macro is started.

Assignment Statement Syntax
ISREDIT (varname) = SCAN
ISREDIT SCAN = [ON]

[OFF]

varname
The name of a variable to contain the setting of scan mode, either ON or
OFF.

ON Same as macro command syntax.

OFF Same as macro command syntax.

SAVE_LENGTH

388 z/OS V1R2.0 ISPF Edit and Edit Macros

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Example
To set a line whose number is in variable &LNUM to:
&SYSDATE is a CLIST built-in function

set scan mode off and issue the LINE command with &&SYSDATE as the CLIST
function name. The CLIST processor strips off the first &, but, because scan mode
is off, the editor does not remove the second &:;
ISREDIT SCAN OFF
ISREDIT LINE &LNUM = "&&SYSDATE is a CLIST built-in function"
ISREDIT SCAN ON

Because the ISPEXEC call interface for REXX EXECs allows you to specify
parameters as symbolic variables, a single scan always takes place before the
syntax check of a statement. Therefore, the rule of using two ampersands (&)
before variable names to avoid substitution of variable names also applies to REXX
EXECs.

SEEK—Seek a Data String, Positioning the Cursor
The SEEK macro command finds one or more occurrences of a search string
without changing the exclude status of the line.

Macro Command Syntax
ISREDIT SEEK string [label-range] [NEXT] [CHARS] [X] [col-1 [col-2]]

[ALL] [PREFIX] [NX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

string The search string you want to find. The maximum allowable length of the
string is 256 bytes. If you are specifying a hex string, the maximum is 128
hexadecimal characters.

label-range
Two labels that identify the range of lines SEEK is to search. The defaults
are the editor-defined .ZFIRST and .ZLAST labels.

When using a macro that uses NEXT or PREV with a label-range, be
careful concerning cursor placement. If the cursor is currently placed below
the label-range, and the NEXT occurence of a string is requested, the
process returns a return code of 4 and the string is not found, even if it
exists within the label-range.

If the cursor is currently placed above the label-range, and the PREV
occurence of a string is requested, the process returns a return code of 4
and the string is not found, even if it exists within the label-range.

NEXT Starts at the first position after the current cursor location and searches
ahead to find the next occurrence of string. NEXT is the default.

ALL Starts at the top of the data and searches ahead to find all occurrences of
string.

SCAN

Chapter 11. Edit Macro Commands and Assignment Statements 389

FIRST Starts at the top of the data and searches ahead to find the first occurrence
of string.

LAST Starts at the bottom of the data and searches backward to find the last
occurrence of string.

PREV Starts at the current cursor location and searches backward to find the
previous occurrence of string.

CHARS
Locates string anywhere the characters match. CHARS is the default.

PREFIX
Locates string at the beginning of a word.

SUFFIX
Locates string at the end of a word.

WORD
Locates string when it is delimited on both sides by blanks or other
non-alphanumeric characters.

X Scans only lines that are excluded from the display.

NX Scans only lines that are not excluded from the display.

col-1 and col-2
Numbers that identify the columns SEEK is to search.

Description
Use the FIND macro command instead of SEEK if you want to locate a string and
change the exclude status of the line that contains that string at the same time.

You can use SEEK to find a search string, change it with CHANGE, and then
exclude it from the display with EXCLUDE.

To find the next occurrence of the letters ELSE without specifying any other
qualifications, include the following line in an edit macro:
ISREDIT SEEK ELSE

Since no other qualifications were specified, the letters ELSE can be:
v Uppercase or a mixture of uppercase and lowercase
v At the beginning of a word (prefix), the end of a word (suffix), or the entire

word (word)
v In either an excluded or a nonexcluded line
v Anywhere within the current boundaries.

To find the next occurrence of the letters ELSE, but only if the letters are uppercase:
ISREDIT SEEK C'ELSE'

This type of search is called a character string search (note the C that precedes the
search string) because it finds the next occurrence of the letters ELSE only if the
letters are in uppercase. However, since no other qualifications were specified, the
letters can be found anywhere in the data set or member, as outlined in the
preceding list.

For more information, including other types of search strings, see “Finding,
Seeking, Changing, and Excluding Data” on page 51.

SEEK

390 z/OS V1R2.0 ISPF Edit and Edit Macros

Return Codes
The following return codes can be issued:
0 Normal completion
4 String not found
12 Syntax error
20 Severe error.

Examples
The following example finds the last occurrence in the data set of the letters ELSE.
However, the letters must occur on or between lines labeled .E and .S; they must
be the last four letters of a word; and they must be found in an excluded line.
ISREDIT SEEK ELSE .E .S LAST SUFFIX X

The following example finds the first occurrence of the letters ELSE that
immediately precedes the cursor position. However, the cursor must not be
positioned ahead of the lines that are labeled .E and .S. Also, the letters must occur
on or between lines labeled .E and .S; they must be stand-alone characters (not part
of any other word); they must be found in a nonexcluded line; and they must exist
within columns 1 and 5:
ISREDIT SEEK ELSE .E .S PREV WORD NX 1 5

SEEK_COUNTS—Query Seek Counts
The SEEK_COUNTS assignment statement retrieves the values set by the most
recently entered SEEK command and places them in variables.

Assignment Statement Syntax
ISREDIT (var1,var2) = SEEK_COUNTS

var1 The name of a variable to contain the number of strings found. It must be
an 8-character value that is left-padded with zeros.

var2 The name of a variable to contain the number of lines on which strings
were found. It must be an 8-character value that is left-padded with zeros.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Example
To seek all lines with a blank in column 1 and store the number of such lines in
variable &BLNKS:
ISREDIT SEEK ALL " " 1
ISREDIT (BLNKS) = SEEK_COUNTS

SESSION—Query Session Type
The SESSION assignment statement identifies the type of session in which the
macro is running, Edit, View, EDIF, or VIIF. It also identifies if SCLM is active or
not.

SEEK

Chapter 11. Edit Macro Commands and Assignment Statements 391

Assignment Statement Syntax
ISREDIT (var1,var2) = SESSION

var1 This variable contains either EDIF, EDIT, VIEW, or VIIF to identify the type
of session.

var2 This variable contains SCLM if SCLM is active, or four asterisks (****) if
SCLM is not active.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

SETUNDO—Set UNDO Mode
The SETUNDO macro command allows the UNDO function to be turned on or off
and retrieves the current UNDO status.

Macro Command Syntax
ISREDIT SETUNDO [STORAGE]

[RECOVER]
[ON]
[OFF]

STORAGE
Enables edit changes to be saved in storage.

RECOVER
Enables edit changes to be saved through the recovery file only. If edit
recovery is off, SETUNDO RECOVER turns recovery on.

ON Enables edit changes to be saved in storage.

OFF Disables the saving of edit changes in storage. If edit recovery is available,
the undo command uses the edit recovery file.

Assignment Statement Syntax
ISREDIT (varname) = SETUNDO
ISREDIT SETUNDO = [STORAGE]

[RECOVER]
[ON]
[OFF]

varname
The name of a variable containing the setting of the UNDO mode, either
OFF or RECOVER or STORAGE.

STORAGE
Enables edit changes to be saved in storage.

RECOVER
Enables edit changes to be saved through the recovery file only. If edit
recovery is off, SETUNDO RECOVER turns recovery on.

ON Enables edit changes to be saved in storage.

OFF Disables the saving of edit changes in storage. If edit recovery is available,
the undo command uses the edit recovery file.

SESSION

392 z/OS V1R2.0 ISPF Edit and Edit Macros

Description
The SETUNDO macro command enables undo processing. It does not perform the
undo function itself. Valid operands are STORAGE, RECOVER, ON, or OFF. If an
operand is not supplied, STORAGE is the default.

If SETUNDO is set on by a macro and was not on already, the UNDO function is
enabled for all interactions started from the point SETUNDO was turned on.

Note: Changes are saved on the undo chain after:
v SETUNDO STORAGE is specified in a macro, and it was previously OFF or

REC, or
v SETUNDO REC is specified in a macro, and it was previously OFF.

It is possible to undo back to a particular point in a macro. This is helpful in
debugging edit macros.

Notes:

1. If SETUNDO is disabled through the configuration table, the SETUNDO macro
command is accepted and returns a zero return code. It does not turn recovery
on.

2. The SETUNDO command is ignored if UNDO from storage is not enabled by
the installer or person who maintains the ISPF product. For information on
enabling UNDO from storage, see ISPF Planning and Customizing

Return Codes
The following return codes can be issued:

0 Successful completion. SETUNDO was turned on or off, or status remains
unchanged because UNDO was already on or off.

20 Severe error. Probably a parameter error (something other than STG, REC,
or OFF was specified).

Examples
To disable the saving of edit changes in storage:
ISREDIT SETUNDO OFF

To enable the saving of edit changes in storage:
ISREDIT SETUNDO = STORAGE

To store the value of SETUNDO in the variable &SET:
ISREDIT (SET) = SETUNDO

SHIFT (—Shift Columns Left
The SHIFT (macro command moves characters on a line to the left without
altering their relative spacing. Characters shifted past the current BOUNDS setting
are deleted. See “Shifting Data” on page 49 for more information.

Macro Command Syntax
ISREDIT SHIFT (lptr [n]

[2]

lptr Specifies that a line pointer must be used. A line pointer can be a label or a
relative line number.

SETUNDO

Chapter 11. Edit Macro Commands and Assignment Statements 393

n Specifies the number of columns to shift. If this operand is omitted, the
default is 2 columns.

Description
The SHIFT (command is limited to shifting columns of data on a single line. If
you want to shift columns of data on several lines, each line of data columns must
be moved individually.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid line number
20 Severe error.

Examples
To shift columns of data 10 columns to the left on the line that contains the cursor:
ISREDIT SHIFT (.ZCSR 10

To shift columns of data 2 columns to the left on the line with the label .LAB:
ISREDIT SHIFT (.LAB

SHIFT)—Shift Columns Right
The SHIFT) macro command moves characters on a line to the right without
altering their relative spacing. Characters shifted past the current BOUNDS setting
are deleted. See “Shifting Data” on page 49 for more information.

Macro Command Syntax
ISREDIT SHIFT) lptr [n]

[2]

lptr Specifies that a line pointer must be used. A line pointer can be a label or a
relative line number.

n Specifies the number of columns to shift. If this operand is omitted, the
default is 2 columns.

Description
The SHIFT) command is limited to shifting columns of data on a single line. If
you want to shift columns of data on several lines, each line of data columns must
be moved individually.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid line number
20 Severe error.

Examples
To shift columns of data 4 columns to the right on the line that contains the cursor:
ISREDIT SHIFT) .ZCSR 4

To shift columns of data 2 columns to the right on the line with the label .LAB:

SHIFT (

394 z/OS V1R2.0 ISPF Edit and Edit Macros

ISREDIT SHIFT) .LAB

SHIFT <—Shift Data Left
The SHIFT < macro command moves the body of a program statement to the left
without shifting the label or comments. This command prevents loss of non-blank
characters by stopping before shifting non-blank characters past the bound. See
“Shifting Data” on page 49 for more information.

Macro Command Syntax
ISREDIT SHIFT < lptr [n]

[2]

lptr Specifies that a line pointer must be used. A line pointer can be a label or a
relative line number.

n Specifies the number of columns to shift. If this operand is omitted, the
default is 2 columns.

Description
The SHIFT < command is limited to shifting data on a single line. To shift data on
several lines, you must shift data on each line individually.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid line number
20 Severe error.

Examples
To shift data 4 columns to the left on the line that contains the cursor:
ISREDIT SHIFT < .ZCSR 4

To shift data 2 columns to the left on the line with the label .LAB:
ISREDIT SHIFT < .LAB

SHIFT >—Shift Data Right
The SHIFT > macro command moves the body of a program statement to the right
without shifting the label or comments. This command prevents loss of non-blank
characters by stopping before shifting non-blank characters past the bound. See
“Shifting Data” on page 49 for more information.

Macro Command Syntax
ISREDIT SHIFT > lptr [n]

[2]

lptr Specifies that a line pointer must be used. A line pointer can be a label or a
relative line number.

n Specifies the number of columns to shift. If this operand is omitted, the
default is 2 columns.

SHIFT)

Chapter 11. Edit Macro Commands and Assignment Statements 395

Description
The SHIFT > command is limited to shifting data on a single line. To shift data on
several lines, you must shift data on each line individually.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid line number
20 Severe error.

Examples
To shift data 4 columns to the right on the line that contains the cursor:
ISREDIT SHIFT > .ZCSR 4

To shift data 2 columns to the right on the line with the label .LAB:
ISREDIT SHIFT > .LAB

SORT—Sort Data
The SORT macro command puts data in a specified order.

Macro Command Syntax
ISREDIT SORT [label-range] [X] [sort-field1 ... sort-field5]

[NX]

label-range
Specifies that two labels are required to specify a range of lines for the sort
operation; specifying one label is incorrect. The defaults are the
editor-defined .ZFIRST and .ZLAST labels.

X Specifies that only excluded lines are to be sorted.

NX Specifies that only nonexcluded lines are to be sorted.

sort-field1 ... sort-field5
Specifies the fields to be used in sorting data. You can specify up to five
sort fields as follows:
[A] [start-col [end-col]]
[D]

where:

A Specifies ascending order. It can either precede or follow the
column specification. A is the default.

D Specifies descending order. It can either precede or follow the
column specification.

start-col
Defines the starting column of the field that is to be compared. It
must be within the current boundaries.

end-col
Defines the ending column of the field that is to be compared. It
must be within the current boundaries.

SHIFT >

396 z/OS V1R2.0 ISPF Edit and Edit Macros

If you specify several fields, you must specify both the starting and ending
columns of each field. The fields cannot overlap. If you specify A or D for
one field, you must specify it for all fields.

Description
The SORT command operates in two different modes, based on the hexadecimal
mode status. If hexadecimal mode is on, the data is ordered according to its
hexadecimal representation. If hexadecimal mode is off, data is sorted in the
collating sequence defined for the national language being used.

Sorting Data Without Operands
For a SORT command with no operands, the editor compares the data within the
current boundaries character by character, and then orders it line by line in the
proper collating sequence. It ignores data outside the current boundaries during
both operations. This means that only the data inside the current boundaries is
changed. Labels, excluded lines, line numbers, and change, error, and special line
flags are considered associated with the data, and therefore points to the same data
fields after the sort as they did before the sort.

For example, if you issue a CHANGE ALL command that changes the first, third,
and sixth lines in a data set, these lines are flagged with the change flag, ==CHG>. If
you then issue a SORT command that results in the former lines 1, 3 and 6
becoming the first, second and third lines of the sorted file, the changed line flags
would now exist on the first, second and third lines of the sorted data set.

It is important to properly set the boundaries before issuing the SORT command.
SORT is a powerful tool for editing data that may be formatted in multiple
columns. You can set the boundaries, for example, to the first half of a record and
sort one column of data. Then you can set the boundaries to the last half of the
record and sort a second column of data.

Limiting the SORT Command
You can specify up to five sort fields by labelling starting and ending columns. You
can identify each field as having data sorted in ascending or descending order.

Optionally, you can limit sorting to a range of lines by specifying the labels of the
first and last lines of the range. You can also limit sorting to either excluded or
nonexcluded lines.

If you have labels or line ranges that are between the labels or line ranges specified
with the SORT command, you can keep SORT from rearranging them by:
v Excluding them before you enter the SORT command
v Using the NX operand to sort only lines that are not excluded.

See the definition of the NX operand and “EXCLUDE—Exclude Lines from the
Display” on page 242 for more information.

Sorting DBCS Data
When sorting data that contains DBCS character strings, you must ensure that no
DBCS string crosses the boundaries. Also, all records must have the same format at
the boundaries, although the format of the left and right boundaries can differ.

If a boundary divides a DBCS character, or if all records do not have the same
format at the boundaries, the result is unpredictable.

SORT

Chapter 11. Edit Macro Commands and Assignment Statements 397

Return Codes
The following return codes can be issued:
0 Normal completion
4 Lines were already in sort order
8 No records to sort
16 Not enough storage to perform sort
20 Severe error.

Examples
To sort the data in descending order, using the sort key in columns 15 through 20:
ISREDIT SORT D 15 20

To sort all excluded lines in ascending order:
ISREDIT SORT X A

STATS—Set or Query Stats Mode
The STATS macro command sets stats mode, which creates and maintains statistics
for a member of a partitioned data set.

The STATS assignment statement either sets stats mode, or retrieves the setting of
stats mode and places it in a variable.

Macro Command Syntax
ISREDIT STATS [ON]

[OFF]

ON Creates or updates library statistics when the data is saved.

OFF Does not create or update library statistics.

Assignment Statement Syntax
ISREDIT (varname) = STATS
ISREDIT STATS = [ON]

[OFF]

varname
The name of a variable to contain the setting of stats mode, either ON or
OFF.

ON Same as macro command syntax.

OFF Same as macro command syntax.

See “Statistics for PDS Members” on page 28 for more information.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Examples
To put the value of stats mode in variable &LIBSTAT:
ISREDIT (LIBSTAT) = STATS

SORT

398 z/OS V1R2.0 ISPF Edit and Edit Macros

To set stats mode on:
ISREDIT STATS = ON

To set stats mode off:
ISREDIT STATS OFF

To reset stats mode from the mode saved in variable &LIBSTAT:
ISREDIT STATS = &LIBSTAT

SUBMIT—Submit Data for Batch Processing
The SUBMIT macro command submits the member or data set you are editing (or
the part of the member or data set defined by the range of line pointers or the X or
NX parameters) to be processed as a batch job.

Macro Command Syntax
ISREDIT SUBMIT [range] [X]

[NX]

range Two labels that define the first and last lines to be submitted. The defaults
are the editor-defined .ZFIRST and .ZLAST labels.

X Submits only lines that are excluded from the display.

NX Submits only lines that are not excluded from the display.

Description
The editor does not supply a job statement when you enter the SUBMIT command.
You can supply job statements as part of the data being submitted. When you
supply a job statement, only the job name is logged to the ISPF log data set to
ensure the protection of sensitive data.

PDF uses TSO SUBMIT to submit the job.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error (submit failed).

Examples
To submit the first 20 lines of the data as a batch job:
ISREDIT SUBMIT 1 20

To submit all of the data as a batch job:
ISREDIT SUBMIT

To submit only the non-exluded lines as a batch job:
ISREDIT SUBMIT NX

TABS—Set or Query Tabs Mode
The TABS macro command:
v Turns tabs mode on and off
v Defines the logical tab character

STATS

Chapter 11. Edit Macro Commands and Assignment Statements 399

v Controls the insertion of attribute bytes at hardware tab positions defined with
the TABS line command.

The TABS assignment statement does everything the macro command can do. It
can also retrieve the setting of tabs mode and place it in a variable.

Use PROFILE to check the setting of tabs mode and the logical tab character. See
“Using Tabs” on page 68 if you need more information about using tabs.

Macro Command Syntax
ISREDIT TABS [ON] [STD]

[ALL]
[tab-character]

[OFF]

ON Turns tabs mode on, which means that logical tabs can be used to break up
strings of data. This is the default operand. If no other operands are
included, all hardware tab positions (asterisks) that contain a blank or null
character are activated because STD is also a default operand. The TABS ON
STD message appears in the profile display.

OFF Turns tabs mode off, which means that logical tabs cannot be used.
Attribute bytes are deleted from all hardware tab positions, causing the
Tab Forward and Tab Backward keys to ignore hardware tabs defined on
the =TABS> line. Blanked-out characters occupying these positions reappear.
The TABS OFF message appears in the profile display.

STD Activates all hardware tab positions (asterisks) that contain a blank or null
character. The editor inserts attribute bytes, which cannot be typed over, at
these positions. STD is the default operand. You can use the Tab Forward
and Tab Backward keys to move the cursor one space to the right of the
attribute bytes. The TABS ON STD message appears in the profile display.

ALL Causes an attribute byte to be inserted at all hardware tab positions.
Characters occupying these positions are blanked out and the attribute
bytes cannot be typed over. The Tab Forward and Tab Backward keys can
be used to move the cursor one space to the right of these attribute bytes.
The TABS ON ALL message appears in the profile display.

tab-character
Defines a single character that is not a number, letter, or command
delimiter as the logical tab character. This character is used with hardware
tab definitions. The TABS ON tab-character message appears in the profile
display.

You can enclose the character in quotes (' or "), although this is not
necessary unless you want to use one of the following as the tab character:
= ' " < , (+

The ampersand (&), left bracket ([), and right bracket (]) should not be
used as tab characters at all.

The tab-character operand causes the data string that follows the logical
tab character to align itself one space to the right of the first available
hardware tab position when you press Enter. No attribute bytes are
inserted.

If no hardware tabs are defined, the editor aligns the data vertically. If
software tabs are defined, the first data string is aligned under the first

TABS

400 z/OS V1R2.0 ISPF Edit and Edit Macros

software tab position and the remaining data strings are aligned at the left
boundary. If neither software nor hardware tabs are defined, the editor
aligns all the data strings at the left boundary.

With the tab-character operand, the Tab Forward and Tab Backward keys
ignore hardware tab positions when the tab-character operand is used
because no attribute bytes are inserted.

Assignment Statement Syntax
ISREDIT (var1,var2) = TABS
ISREDIT TABS = [ON] [STD]

[ALL]
[tab-character]

[OFF]

var1 The name of a variable to contain the setting of tabs mode, either ON or
OFF.

var2 The name of a variable to contain the tab character and either ALL or STD.
This variable may be blank.

ON Same as macro command syntax.

OFF Same as macro command syntax.

STD Same as macro command syntax.

ALL Same as macro command syntax.

tab-character
Same as macro command syntax.

Return Codes
The following return codes can be issued:
0 Normal completion
20 Severe error.

Examples
To set the tab character to \ and set the tabs mode ON:
ISREDIT TABS ON \

To set the value of tabs mode from variable &TABVAL:
ISREDIT TABS = (TABVAL)

TABSLINE—Set or Query Tabs Line
The TABSLINE assignment statement either sets the tabs line, or retrieves the tabs
line and places it in a variable.

Assignment Statement Syntax
ISREDIT (varname) = TABSLINE
ISREDIT TABSLINE = data

varname
Specifies the name of a variable to hold the contents of the current tabs
line.

TABS

Chapter 11. Edit Macro Commands and Assignment Statements 401

data Specifies the data used to set the tabs line. The only valid tab characters for
this data are blanks, asterisks (*), hyphens (-), and underscores (_). The
following forms can be used:
v Simple string
v Delimited string
v Variable
v Template (< col,string >)
v Merge format (string-1 + string-2, operand + string-2, string-1 + operand)
v Operand:

LINE lptr
Data from the line with the given line pointer (lptr).

MASKLINE
Data from the mask line.

TABSLINE
Data from the tabs line.

Return Codes
The following return codes can be issued:
0 Normal completion
4 Data truncated
8 Invalid data detected and ignored
20 Severe error (invalid input).

Examples
To store the value of the tabs line in variable &OLDTABS:
ISREDIT (OLDTABS) = TABSLINE

To set the tabs line to "*___* *":
ISREDIT TABSLINE = "*___* *"

To clear the tabs line:
ISREDIT TABSLINE = " "

To set tabs in columns 1 and 35:
ISREDIT TABSLINE = <1,*,35,*>

To add a tab in column 36:
ISREDIT TABSLINE = TABSLINE + <36,*>

TENTER—Set Up Panel for Text Entry
The TENTER macro command provides one very long line wrapped around onto
many rows of the panel to allow power typing for text entry. The editor does the
formatting for you.

The TENTER command is different from the INSERT command in that the INSERT
command inserts a specified number of separate, blank lines and the mask, if any,
just as you typed it. With the TENTER command, however, mask line characters
are applied only to the new lines created when the text is flowed outside the
boundaries. Any mask line characters within the bounds are ignored.

TABSLINE

402 z/OS V1R2.0 ISPF Edit and Edit Macros

Macro Command Syntax
ISREDIT TENTER lptr [numlines]

lptr Specifies that a line pointer must be used. A line pointer can be a label or a
relative line number.

numlines
Specifies the number of lines displayed for text entry; these lines are not
saved unless they contain data. If you do not type a number, the
remainder of the panel appears for text entry.

Description
It is important to make sure that the line referenced by the line pointer on
TENTER appears; otherwise, the text area will not be visible to you. Use LOCATE
to find and display the line for you.

Before you enter text entry mode, consider the following:
v If you are going to be typing text in paragraph form, such as for a memo or

letter, make sure caps mode is off. Otherwise, when you press Enter, your text
will change to all caps.

v You may want to turn off number mode to prevent sequence numbers from
writing over any of your text.

v Make sure the bounds setting is where you want it so that the text flows
correctly when you end text entry mode.

v Once you enter text entry mode, no macros can be run.

To enter text entry mode:
1. Include the following command in an edit macro:

ISREDIT TENTER lptr numlines

where lptr is a label or relative line number and numlines is the number of
blank lines that you want to insert. If the number that you type is greater than
the number of rows remaining on the panel, the vertical bar that indicates
where you will run out of room does not appear and the keyboard does not
lock at the last character position on the panel. When you run the edit macro
(see step 2), you can scroll down to bring the additional blank text entry space
into view.

2. Run the edit macro. The editor inserts a single continuous blank area for the
specified number of rows or to the bottom of the panel.

To begin a new paragraph:
1. Use the return (Enter), cursor movement, or Tab keys to advance the cursor

enough spaces to leave one blank row on the panel.

If there are insufficient blank spaces on the panel, the keyboard locks when you try
to type beyond the last character position. A vertical bar (|) appears above the
cursor at the locked position.

To generate more blank spaces:
1. Press the Reset key to unlock the keyboard.
2. Press Enter.

To end text entry mode:

TENTER

Chapter 11. Edit Macro Commands and Assignment Statements 403

1. Press Enter. The data is flowed together into a paragraph and any embedded
blanks are preserved. The left and right sides of the paragraph are determined
by the current bounds.

See “Word Processing” on page 65 and “Entering Text (Power Typing)” on page 67
for more information.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid line number
20 Severe error.

Example
To find the last line in the data and set up the display for text entry following the
last line:
ISREDIT LOCATE .ZL
ISREDIT TENTER .ZL

TFLOW—Text Flow a Paragraph
The TFLOW macro command restructures paragraphs. This is sometimes necessary
after deletions, insertions, splitting, and so forth. See “Word Processing” on page 65
and “Formatting Paragraphs” on page 65 for more information.

Macro Command Syntax
ISREDIT TFLOW lptr [col]

lptr Specifies that a line pointer must be used. A line pointer can be a label or a
relative line number.

col Specifies the column to which the text should be flowed. If the column
number is omitted, it defaults to the right boundary. This is different from
the TF (text flow) line command, which defaults to the panel width when
default boundaries are in effect.

If a number greater than the right boundary is specified, the right
boundary is used.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid line number
20 Severe error.

Example
To limit the flow of text, starting at label .PP, to the displayed columns:
ISREDIT (,RCOL) = DISPLAY_COLS
ISREDIT TFLOW .PP &RCOL

TSPLIT—Text Split a Line
The TSPLIT macro command moves part or all of a line of text to the following
line. This makes it easier for you to add new material to existing text.

TENTER

404 z/OS V1R2.0 ISPF Edit and Edit Macros

Macro Command Syntax
ISREDIT TSPLIT [lptr col]

lptr Specifies that a line pointer is used to identify the line where the split is to
occur. A line pointer can be a label or a relative line number.

col Specifies the column at which the text is to be split.

If you omit both operands, the split point is assumed to be the current cursor
position.

Description
The TSPLIT macro command is affected by the current setting of the boundaries.
For instance, data beyond the right boundary is not moved to the line added by
TSPLIT. Data between the split column and the right boundary is moved to a new
line. The cursor position is set to the split point.

To rejoin lines, use the TFLOW macro command. See “TFLOW—Text Flow a
Paragraph” on page 404 for more information.

For more information about splitting lines and other word processing commands,
see “Word Processing” on page 65 and “Splitting Lines” on page 66.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Invalid line number
20 Severe error.

Example
To split the line labeled .TOP at column 15:
ISREDIT (LINENBR) = LINENUM .TOP
ISREDIT TSPLIT &LINENBR 15

UNNUMBER—Remove Sequence Numbers
The UNNUMBER macro command sets all sequence fields to blanks, turns off
number mode, and positions the data so that column 1 is the first column
displayed.

Macro Command Syntax
ISREDIT UNNUMBER

Description
The UNNUMBER command is valid only when number mode is also on. The
standard sequence field, the COBOL sequence field, or both, are blanked out.

Return Codes
The following return codes can be issued:
0 Normal completion
12 Number mode not on
20 Severe error.

TSPLIT

Chapter 11. Edit Macro Commands and Assignment Statements 405

Example
To set all sequence fields to blanks, turn number mode off, and position the panel
so that column 1 is the first column displayed:
ISREDIT UNNUMBER

UP—Scroll Up
The UP macro command scrolls data up from the current panel position.

Macro Command Syntax
ISREDIT UP amt

amt The scroll amount, the number of lines (0 - 9999) to scroll, or one of the
following operands:

MAX Displays the first panel of data.

HALF Displays the previous half-panel of data.

PAGE Displays the previous full panel of data.

CURSOR
Scrolls until the line on which the cursor is located becomes the
last data line on the panel.

DATA Scrolls until the first data line on the current panel becomes the
last data line on the next panel.

Description
To scroll up using the panel position when the macro was issued, use
USER_STATE assignment statements to save and then restore the panel position
operands.

When you issue the UP command, the non-data lines on the panel affect the
number of lines scrolled. However, if you define a macro named UP, it only
overrides UP when used from another macro. UP does not change the cursor
position and cannot be used in an initial macro.

The actual number of lines to appear on the panel is determined by:
v The number of lines excluded from the panel
v The terminal display size and split panel line
v The number of special temporary lines displayed, such as the ==ERR>, ==CHG>,

=PROF>, =MASK>, =BNDS>, =TABS>, ==MSG>, =NOTE=, =COLS>, and ====== lines.

The first line displayed is determined in one of two ways: (1) a LOCATE command
can actually set the line to be first on the panel, or (2) the first line to be displayed
depends on whether the cursor was explicitly set by a CURSOR assignment
statement or implicitly set by a SEEK, FIND, CHANGE, or TSPLIT command.
Since the cursor must be on the panel, the line that is first on the panel may be
different from the line that was first when you started the macro.

Return Codes
The following return codes can be issued:
0 Normal completion
2 No more data UP
4 No visible lines
8 No data to display

UNNUMBER

406 z/OS V1R2.0 ISPF Edit and Edit Macros

12 Amount not specified
20 Severe error.

Examples
To scroll up to the top of the data set:
ISREDIT UP MAX

To display the previous half panel of data:
ISREDIT UP HALF

To display the previous full panel of data:
ISREDIT UP PAGE

To make the line where the cursor is placed the last one on the display:
ISREDIT UP CURSOR

To display the previous page less one line:
ISREDIT UP DATA

USER_STATE—Save or Restore User State
The USER_STATE assignment statement saves or restores the state of edit profile
values, FIND, CHANGE, SEEK, and EXCLUDE values, and panel and cursor
values.

Assignment Statement Syntax
ISREDIT (varname) = USER_STATE
ISREDIT USER_STATE = (varname)

varname
The name of a variable to contain your status information.

Note: The information in the variable is saved in an internal format that is
subject to change. Dependence on the format can lead to macro
errors.

Description
USER_STATE can be used at the beginning of a macro to save conditions, and at
the end of a macro to restore the conditions that may have changed during
processing. Many of the values saved by USER_STATE can be saved and restored
individually. The USER_STATE assignment statement is a simple way of saving
many values with a single statement.

The following edit modes and values are saved and restored by USER_STATE:

AUTOLIST CURSOR NOTES RECOVERY
AUTONUM HEX NULLS STATS
AUTOSAVE IMACRO NUMBER TABS
BOUNDS MASKLINE PACK TABSLINE
CAPS MODEL CLASS PROFILE

Return Codes
The following return codes can be issued:

UP

Chapter 11. Edit Macro Commands and Assignment Statements 407

0 Normal completion
20 Severe error.

Examples
To save the user state in variable &STATUS:
ISREDIT (STATUS) = USER_STATE

To restore the user state from variable &STATUS:
ISREDIT USER_STATE = (STATUS)

VERSION—Set or Query Version Number
The VERSION macro command allows you to change the version number assigned
to a member of an ISPF library.

The VERSION assignment statement either sets the version number, or retrieves
the version number and places it in a variable.

For more information about version numbers, see “Version and Modification Level
Numbers” on page 29.

Macro Command Syntax
ISREDIT VERSION num

num The version number. It can be any number from 1 to 99.

Assignment Statement Syntax
ISREDIT (varname) = VERSION
ISREDIT VERSION = num

varname
The name of a variable to contain the version number. The version number
is a 2-digit value that is left-padded with zeros.

num Same as macro command syntax.

Return Codes
The following return codes can be issued:
0 Normal completion
4 Stats mode is off, the command is ignored
12 Invalid value specified (the version must be 1 to 99)
20 Severe error.

Examples
To save the version number in variable &VERS:
ISREDIT (VERS) = VERSION

To set the version number to 1:
ISREDIT VERSION 1

To set the version number from variable &VERS:
ISREDIT VERSION = &VERS

USER_STATE

408 z/OS V1R2.0 ISPF Edit and Edit Macros

VIEW—View from within an Edit Session
The VIEW macro command allows you to view a member of the same partitioned
data set during your current edit session.

Macro Command Syntax
ISREDIT VIEW member

member
A member of the library or other partitioned data set you are currently
editing. You may enter a member pattern to generate a member list.

Description
Your initial edit session is suspended until the view session is complete. Editing
sessions can be nested until you run out of storage.

To exit from the view session, END or CANCEL must be processed by a macro or
entered by you. The current edit session resumes.

The VIEW service call, ISPEXEC VIEW, is an alternate method of starting view. It
offers the option of viewing another data set and specifying an initial macro.

For more information on using the VIEW service, refer to ISPF Services Guide

Return Codes
The following return codes can be issued:
0 Normal completion
12 Your error (invalid member name, recovery pending)
20 Severe error.

Examples
To view the member OLDMEM in your current ISPF library:
ISREDIT VIEW OLDMEM

VOLUME—Query Volume Information
The VOLUME assignment statement retrieves the volume serial number (or serial
numbers) and the number of volumes on which the data set resides.

Assignment Statement Syntax
ISREDIT (var1,var2) = VOLUME

var1 The name of a variable to contain the serial number of the volume on
which the data set resides. For a multivolume data set, this will be the
serial number of the first volume. The volume serial number is a six
character value.

var2 The name of a variable to contain the number of volumes the data set
occupies. The number of volumes is a two character value.

Return Codes
The following return codes can be issued:
0 Normal completion
4 The data set is a multivolume data set and the shared pool variable

VIEW

Chapter 11. Edit Macro Commands and Assignment Statements 409

ZEDMVOL is set to contain all the volume serial numbers of the data set.
ZEDMVOL has the length of the number of volumes times six.

20 Severe error.

Examples
To retrieve just the volume serial number of the data set:
ISREDIT (VOL) = VOLUME

To retrieve just the number of volumes the data set occupies:
ISREDIT (,NUMVOL) = VOLUME

To retrieve both the volume serial number and the number of volumes the data set
occupies:
ISREDIT (VOL,NUMVOL) = VOLUME

XSTATUS—Set or Query Exclude Status of a Line
The XSTATUS assignment statement either sets the exclude status of the specified
data line, or retrieves the exclude status of the specified data line and places it in a
variable.

Assignment Statement Syntax
ISREDIT (varname) = XSTATUS lptr
ISREDIT XSTATUS lptr = X | NX

varname
The name of a variable to contain the exclude status, either X or NX.

lptr Specifies that a line pointer must be used. A line pointer can be a label or a
relative line number.

X Specifies that the specified line is to be excluded.

NX Specifies that the specified line is to be shown (nonexcluded).

Description
Exclude status determines whether the line is excluded.

If you want to exclude several lines at one time, the EXCLUDE command should
be used. Similarly, to show several lines at one time, use the FIND command.

Return Codes
The following return codes can be set:
0 Normal completion
8 An attempt to set a line status to NX could not be performed. The line has

a pending line command on it. For example, if an excluded line contains
an M line command in the line command area, then the MOVE/COPY IS
PENDING message is displayed and the lines cannot be shown. The reset
command can be used to remove your line commands from the line
command area.

12 Line number is not an existing line.
20 Severe error.

VOLUME

410 z/OS V1R2.0 ISPF Edit and Edit Macros

Examples
Use XSTATUS together with SEEK and CHANGE to preserve the exclude status of
a line. For example, to store the exclude status of the line whose number is in
variable &N in variable &LINEX:
ISREDIT (LINEX) = XSTATUS &N

To exclude line 1:
ISREDIT XSTATUS 1 = X

To locate a string and change it, saving and then restoring the exclude status:
ISREDIT SEEK &DATA
IF &LASTCC = 0 THEN -

DO
ISREDIT (XLINE) = XSTATUS .ZCSR
ISREDIT CHANGE &DATA &NEWDATA .ZCSR .ZCSR
ISREDIT XSTATUS .ZCSR = (XLINE)

END

XSTATUS

Chapter 11. Edit Macro Commands and Assignment Statements 411

XSTATUS

412 z/OS V1R2.0 ISPF Edit and Edit Macros

Part 4. Appendixes

© Copyright IBM Corp. 1984, 2001 413

414 z/OS V1R2.0 ISPF Edit and Edit Macros

Appendix A. Abbreviations for Commands and Other Values

The following list includes the command names and keywords that can be
abbreviated, followed by the allowable abbreviations. To improve readability, do
not use abbreviations in edit macros. ISPF scans the NUMBER macro as a
command. If you want to define NUMBER as a program macro and use the
abbreviated form, define the abbreviations as program macros also.

Edit Line Commands
BOUNDS BOUND BNDS BND BOU
COLS COL
LCC LCLC
MDD MDMD
TABS TAB
UCC UCUC

Edit Primary Commands
BOUNDS BOUND BNDS BND BOU
CANCEL CAN
CHANGE CHA CHG C
CREATE CRE
DEFINE DEF
DELETE DEL
EXCLUDED EXCLUDE EXC EX X
FIND F
HILITE HILIGHT HI
LEVEL LEV
LOCATE LOC L
MODEL MOD
NONULLS NONULL NONUL
NONUMBER NONUMBR NONUMB NONUM
NOTABS NOTAB
NOTES NOTE
NULLS NULL NUL
NUMBER NUMB NUM
PROFILE PROF PRO PR
RECOVERY RECOVER RECOVRY RECVRY RECOV RECVR

REC
RENUM REN
REPLACE REPL REP
RESET RES
SETUNDO SETU
SUBMIT SUB
TABS TAB
UNNUMBER UNNUMB UNNUM UNN
VERSION VERS VER

Parameters
Parameters
AFTER AFT
BEFORE BEF

© Copyright IBM Corp. 1984, 2001 415

Keywords/Operands
CHANGE CHG
CHARS CHAR
COMMAND COM
CURSOR CUR
DISABLED DISABLE DISAB
DISPLAY DIS DISP DISPL
DOLOGIC DO
ERROR ERR
IFLOGIC IF
LABEL LABELS LAB
PREFIX PRE
RECOVER RECOVERY REC
SPECIAL SPE
STANDARD STD
STORAGE STG STORE STOR STO
SUFFIX SUF
VERTICAL VERT

Scroll Amounts
CUR CSR C
DATA D
HALF H
MAX M
PAGE P

Keywords/Operands

416 z/OS V1R2.0 ISPF Edit and Edit Macros

Appendix B. Edit-Related Sample Macros

The following edit macros are shipped with ISPF in the IBM-supplied ISPF
samples library.

Sample Macros
These macros can be used in problem resolution.

ISRCUT
An ISPF Edit macro written in REXX that writes lines from a file to the
user’s PROFILE pool for later inclusion by the ISRPASTE macro.

ISRONLY
An ISPF Edit macro written in REXX that combines the ISPF Edit
commands EXCLUDE and FIND such that only the lines containing the
search string are displayed.

ISRPASTE
An ISPF Edit macro written in REXX that writes lines from the user’s
PROFILE pool into the current file. This macro is used in conjunction with
the ISRCUT macro.

© Copyright IBM Corp. 1984, 2001 417

Edit-Related Sample Macros

418 z/OS V1R2.0 ISPF Edit and Edit Macros

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non_IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504–1785, USA.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries in writing to

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1984, 2001 419

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact the IBM Corporation,
Department TL3B, 3039 Cornwallis Road, Research Triangle Park, North Carolina,
27709–2195, USA. Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non_IBM products should be addressed to the
suppliers of those products.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information
This book primarily documents information that is NOT intended to be used as
Programming Interfaces of ISPF.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AD/Cycle
BookManager
C++
Common User Access
CUA
DFSMSdfp
DFSMSdss
DFSMShsm
DFSMSrmm
DFSMS/MVS
DFSORT
ESCON
FFST
GDDM

IBM
Language Environment
MVS
MVS/ESA
OS/2
OS/390
OS/390 Security Server
RACF
Resource Access Control Facility
SOMobjects
System View
VisualLift
VTAM

Microsoft and Windows are registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

420 z/OS V1R2.0 ISPF Edit and Edit Macros

Other company, product, and service names may be trademarks or service marks
of others.

Notices 421

422 z/OS V1R2.0 ISPF Edit and Edit Macros

Index

Special Characters
((column shift left), line command 154
) (column shift right), line command 155
! (exclamation point), for implicit edit

macro 114
& prefix for edit commands 16
> (data shift right), line command 160
< (data shift left), line command 157
&LASTCC variable 117
{ } (one operand required) 152, 205, 297,

298
| (OR symbol) 152, 205, 298
.ZCSR 63, 110
.ZDEST 110, 114
.ZFIRST 63, 110
.ZFRANGE 110, 115
.ZLAST 63, 110
.ZLRANGE 110, 115

Numerics
3850 virtual volumes, accessing 7

A
A (after), line command 161, 162
A operand, REXX TRACE statement 121
abbreviations for commands and other

values 415
ACCOUNT command 8
add a data set member 382
add data 276
adding

a line 174, 352
edit macro command 94
models 79

alias, assigning 232, 329
alias name, defining with edit

macro 113
application-wide macros 28
assignment statement

AUTOLIST 306
AUTONUM 307
AUTOSAVE 308
BLKSIZE 309
BOUNDS 310
CAPS 314
CHANGE COUNT 317
CURSOR 322
DATA_CHANGED 326
DATA_WIDTH 326
DATAID 327
DATASET 328
description 102
DISPLAY_COLS 331
DISPLAY_LINES 332
EXCLUDE_COUNTS 338
FIND_COUNTS 340
FLIP 341
FLOW_COUNTS 342

assignment statement (continued)
HEX 342
how to use 104
IMACRO 347
LABEL 110, 348
LEVEL 350
LINE 351
LINE_AFTER 352
LINE_BEFORE 354
LINENUM 357
LRECL 359
MACRO_LEVEL 110, 361
MASKLINE 362
MEMBER 363
notation conventions 297
NOTES 366
NULLS 367
NUMBER 368
PACK 371
parentheses guidelines 104
PROFILE 375
RANGE_CMD 115, 377
RECFM 378
RECOVERY 379
reference section 297
RMACRO 116, 385
SCAN 102, 388
SEEK_COUNTS 391
STATS 398
summary 298
TABS 399
TABSLINE 401
USER_STATE 407
VERSION 408
XSTATUS 410

attribute bytes, used with tabs 70
AUTOLIST

assignment statement 306
macro command 306
primary command 209

autolist mode
defined 21
querying the value 306
setting the value 209, 306

automatic generation of source
listing 209, 306

automatic saving of data 213, 308
AUTONUM

assignment statement 307
macro command 307
primary command 21, 211

autonum mode 21
AUTOSAVE

assignment statement 308
macro command 308
primary command 21, 213

autosave mode, defined 21

B
B (before), line command 48, 164
batch, ending a macro 363
batch processing, submitting data

for 287, 399
batch processing, using edit macros

in 109
beginning an edit session 4
BLKSIZE, assignment statement 309
block size, retrieving 309
boundaries

controlling 214, 310
default 27
definition line 27
setting 166

BOUNDS
assignment statement 310, 311
line command 166
macro command 310, 311
primary command 214

BROWSE
macro command 312
primary command 216

built-in command
disabling 232, 329
processing 215

built-in labels 63
BUILTIN

macro command 312, 313
primary command 215

C
C (copy), line command

description 168
used with CREATE command 228
used with REPLACE command 277

CANCEL
macro command 313
primary command 216

canceling edit changes 216, 313
CAPS

assignment statement 314
DBCS data 218
macro command 314
primary command 21, 217

caps mode
defined 21
overview 22
querying the value 314
setting the value 217, 314

CHANGE
macro command

column-dependent data,
defined 54

DBCS data 55
description 315, 316
EBCDIC data 55
RCHANGE command 272, 378
saving and restoring values 407

© Copyright IBM Corp. 1984, 2001 423

CHANGE (continued)
primary command

column-dependent data,
defined 54

DBCS data 55
description 51, 218, 219
EBCDIC data 55
qualifying search strings 56
specifying search strings 52

repeating 58
change a data string 218, 315
change count, retrieving 317
CHANGE_COUNTS, assignment

statement 317
changed lines 25
changing data 51
changing models 83
character string

changing 218
finding 243, 338
how to use 53
specifying 52

characters
converting 217, 314
converting to lowercase 177
converting to uppercase 199
displaying hexadecimal 247, 342

CLIST CONTROL statements 121
CLIST edit macro statements 87, 93
CLIST WRITE statements 120
COBOL sequence field, defined 30
COLS, line command 170
column identification line,

displaying 170
column limitations 57
column positions, referring to 112
column shifting

DBCS data 49
destructive 49
line command 49

columns
identifying 170
line command 170
query display 331
shift left 393
shift right 394

command, PROFILE RESET 24
command, querying 377
command names, overriding 113
command procedure statements 94
command scan mode, setting the

value 388
commands, reversing last edit 290
Compare, edit command 220, 318
compare command 220, 318
compare command examples 222
compare command return codes 320
compare command syntax 221, 318
compress data 267, 371
CONLIST operand, CLIST CONTROL

statement 121
CONTROL, ISPEXEC statement 117
control and display your profile 269,

375
control edit recovery 273, 379
control null spaces 265, 367
control version number 294, 408

controlling the edit boundaries 214, 310
controlling the edit environment 19
controlling the search for a data

string 55
convert characters to lowercase 177
converting characters 217, 314
converting note lines to data 183
COPY

macro command 321
primary command

description 223, 224
how to use 48

copy a model into the current data
set 257, 363

copying data
into the current data set 48
lines of data 168
macro command 321
primary command 223
using edit macro 105

CREATE
macro command 322
primary command

description 227
how to use 47

creating
a data set member 227, 322
data 47
new data 9

current member name, querying 363
CURSOR, assignment statement 322,

323
positioning cursor on command

line 323
cursor position

querying the value 322
setting the value 322

cursor values, saving and restoring 407
Cut and Save Lines 231, 325
Cut Macro command 325
Cut Primary command 231

D
D (delete) line command 171
data

adding 276
canceling changes 216, 313
changing 51, 218, 315
column-dependent, defined 54
compressing 267, 371
controlling the string search 55
converting data 199
copying 48, 223, 321
copying lines 168
creating 47
creating new 9
DBCS considerations 55
deleting 234, 330
description 219
EBCDIC considerations 55
editing existing 10
excluding 51, 242, 336
finding 51, 243, 338
inserting 348
managing 47
moving 48

data (continued)
packing 17
replacing 47, 276
retrieving the changed status 326
retrieving the ID 327
retrieving the width 326
saving automatically 213, 308
saving the current 282, 386
seek a data string 389
shift left 395
shift right 395
shifting 49, 50
sorting 285, 396
split a line 404
submitting for batch processing 287,

399
test flow a paragraph 404

DATA_CHANGED, assignment
statement 326

data-changed status, retrieving 326
data field, defined 368
data in controlled libraries, editing 17
data lines, referring to 112
data modes 22
data set

adding a member 382
copying a model into 257, 363
creating a member 227, 322
creating a new 9
editing a member 235, 334
editing existing 10
generating statistics 287, 398
moving a member 260, 365
password specification 8
renumbering lines automatically 274,

380
replacing a member 382
retrieving the current name 328
security 8

DATA_WIDTH, assignment
statement 326

DATAID, assignment statement 327
DATASET, assignment statement 328
DBCS data

CHANGE command 55
column shifting 49
display boundary 9
hardware tabs 69, 70
SORT command 286, 397
TE (text entry) line command 68
TF (text flow) 66
TS (text split) line command 67

debugging edit macros 119
debugging edit macros with

ISREMSPY 123
default operands 152, 205, 298
DEFINE

edit macro command 96, 113
macro command 329
primary command 232

define tabs mode 288, 399
defining

a name 232, 329
an alias for a command 113
an edit profile 19

defining macros
implicit 114

424 z/OS V1R2.0 ISPF Edit and Edit Macros

defining macros (continued)
overriding command names 113
resetting definitions 113
scope of definitions 113
using an alias 113

DELETE
macro command 330
primary command 234

deleting
edit macro labels 111
labels 63
lines 171, 234
models 83

delimited string 52
destination, specifying 114
destructive shift, defined 49
dialog development models 75
dialog service errors, debugging 119
dialog service requests 95
dialog variable name, defined 102
direction of the search 55
disabling a command 113
disabling a macro or built-in

command 232, 329
display and control your profile 269,

375
display boundary, DBCS data 9
DISPLAY_COLS, assignment

statement 331
display columns 331
DISPLAY_LINES, assignment

statement 332
display model notes 264, 366
Display the Edit Settings Panel,

EDITSET 237
displaying an edit profile 19
displaying hexadecimal characters 247,

342
distributed edit 3
DOWN, macro command 333
duplicating lines 187

E
EBCDIC data 55
edit

beginning a session 4
canceling changes 216, 313
column shifting 49
command reference section 205
command summary 15
considerations 17
controlling the boundaries 214, 310
controlling the environment 19
controlling the recovery 273, 379
copying data 48
creating data 47
data display panel 10
displaying processed commands 16
editing data in controlled libraries 17
ending a session 14
entry panel 9
excluding lines 61
introduction to 3, 13
line commands 15
macro command 17, 334
managing data 47

edit (continued)
models 75
modes 21
moving data 48
number mode 31
option 2 4
primary command

description 235
example 236
syntax 235

primary commands, description 16
profiles 19
recursive 235, 334
replacing data 47
rules for entering line commands 151
selecting the editor 4
sequence number display 30
sequence number format 30
sequence numbers 29
shifting columns 49
shifting data 49, 50
splitting text 65
text entry 65
text flow 65
undisplayable characters 13
undoing edit interactions 71
word processing 65

Edit - Entry panel 9
edit, distributed 3
edit a member 235, 334
Edit and View Settings Panel 238
edit assignment statements

elements
keyphrase 103
overlays 104
value 102

how to use 104
manipulating data 105

Edit command errors, debugging 119
edit commands and PF key

processing 16
edit compare command 220, 318
Edit data display panel 10
edit macro

alias name 113
ALLMBRS macro 133
assignment statements 94, 102
BOX macro 128
CLIST macro, differences from

program macros 96
column positions, referring to 112
command procedure statements 94
command summary 17
commands 94
creating 93
data lines, referring to 112
defining 113
definition of 3
description 87
dialog service requests 95
FINDCHGS macro 136
identifying 360
IMBED macro 130
implicit definition using an

exclamation point 114
initial macro 27
introduction to 87

edit macro (continued)
labels

description 110
editor-assigned 110
passing 112
referring to 111
using 110

levels 109
line command functions, how to

perform 106
MASKDATA macro 139
messages 109
naming 101
NOPROCESS operand 114
parameters 107
PFCAN macro 127
PROCESS command and

operand 114
program macro

description 95
differences from CLIST macros 96
differences from REXX macros 96
parameter passing 96
running 100
writing 97

recovery macro 115
reference section 297
replacing built-in edit commands 113
resetting a command to previous

status 113
return codes 116
REXX macro, differences from

program macros 96
samples 125
testing

CLIST CONTROL statements 121
CLIST WRITE statements 120
description 119
experimenting with edit macro

commands 122
return codes 117
REXX SAY statements 120
REXX TRACE statements 121

TEXT macro 125
TSO commands 95
using 87
variable substitution 102
variables 101

edit macros, debugging with
ISREMSPY 123

Edit mode defaults 23
edit processing of PF keys 16
edit profile

autolist mode 209
autonum mode 211, 307
autosave mode 213, 308
boundary settings 166
caps mode 217
control and display 269, 375
defaults 23, 24
defining 19
definition of 19
displaying 19
initial macro 253, 347
lock 269, 375
modifying 21
naming 19

Index 425

edit profile (continued)
note mode 264
nulls mode 265
profile name 19
recovery macro 282
saving and restoring 407
specifying 7
tabs mode 288
types 19

Edit Profile Initialization, Site-wide 23
edit profile name, definition 19
edit profiles, locking 21
edit recovery

Edit Recovery panel 44
turning off 45
turning on 44

edit session, ending 241, 335
editing existing data 10
editor, ISPF 4
editor-assigned labels 63
EDITSET 237
EDSET 237
eliminating labels 63
END

macro command 335
primary command 241

end a macro 363
END command 213
end the edit session 241, 335
ending an edit session 14
enter text 192
error codes for severe errors 116
error lines 25
EXCLUDE

macro command 336
primary command

description 51, 242
qualifying search strings 56
specifying search strings 52

repeating 58
EXCLUDE_COUNTS, assignment

statement 338
exclude counts, querying the value 338
exclude status of a line, set or query 410
excluded line limitations 57
excluded lines, redisplaying 62
excluding a line 61, 201, 336
excluding data 51
explicit shifts, defined 49
extent of a search 55

F
F (show first line), line command 173
FIND

macro command
description 338, 339
RFIND command 282, 384
saving and restoring values 407
when to use instead of SEEK 390

primary command
description 51, 243, 244
qualifying search strings 56
specifying search strings 52

repeating 58
FIND_COUNTS, assignment

statement 340

find counts, querying the value 340
finding a data string 243
finding a search string 338
finding data 51
finding models 82
flagged lines

changed lines 25
error lines 25
special lines 25

FLIP
assignment statement 341
definition 62
macro command 341
primary command 245

FLOW_COUNTS, assignment
statement 342

flow counts, querying the value 342
Format Name field 9
formatted edit mode, defined 182
formatting input 362

G
generate sequence numbers 266, 368
generating data set statistics 287, 398
guidelines for using the editor 17

H
Hardware Tab field, defined 70
hardware tabs

DBCS data 70
defining 69
description 68
fields, how to use 70

HEX
assignment statement 342
macro command 342
primary command 22, 247

hexadecimal characters
displaying 247, 342
format 22
mode 247, 342
string 52

HILITE
macro command

description 346
how to use 344

primary command
description 253
how to use 250

HILITE function description 31

I
I (insert) line command 174
I operand, REXX TRACE statement 121
identify an edit macro 360
identify columns 170
IMACRO

assignment statement 347
macro command 347
primary command 22, 253

implicit macro definition 114
implicit shifts, defined 49
initial macro, specifying 253, 347

initial macros
DEFINE commands used in 113
specifying in the EDIT service call 27
specifying on the Edit - Entry

panel 27
starting 27

Initialization, Site-wide Edit Profile 23
INSERT, macro command 348
inserting

data 348
lines 174

interactive column numbers 112
introduction to edit macros 87
ISPEXEC 95
ISPF, definition 3
ISPF list data set 209, 306
ISPF Workstation Tool Integration

dialog 3
ISRCUT edit macro 417
ISREDIT service 96
ISREDIT statements 94, 106
ISREMSPY 123
ISRONLY edit macro 417
ISRPASTE edit macro 417
ISRSETLN, edit macro sample 388

K
keeping an edit command on the

command line 16
keyphrase, defined 103
kinds of search strings 52

L
L (show last line), line command 176
L operand, REXX TRACE statement 121
LABEL

assignment statement
description 348, 349
overview 110

querying the value 348
setting the value 348

labeled line, querying 357
labels

defined 63
deleting 63
editor-assigned 63
eliminating 63
in macro commands 63
specifying a range 64

labels in edit macros
deleting 111
description 110
editor-assigned 110
how to use 110
levels 109
nested macros 111
passing 112
referring to 111

languages for edit macros 87, 93
LC (lowercase), line command 177
left

scroll 349
shift columns 393
shift data 395

426 z/OS V1R2.0 ISPF Edit and Edit Macros

LEFT
macro command 349

LEVEL
assignment statement 350
macro command 350
primary command 254

level number, specifying 254, 350
limiting the SORT command 286, 397
LINE

adding 354
assignment statement 351
querying the number 351
querying the value 351
setting the value 351

LINE_AFTER, assignment statement 352
LINE_BEFORE, assignment

statement 354
Line Command field, resetting 52
line command functions in edit

macros 106
line command summary 152
line commands

((column shift left) 154
) (column shift right) 155
> (data shift right) 160
< (data shift left) 157
A (after) 161
B (before) 164
BOUNDS 166
C (copy) 168
COLS 170
D (delete) 171
description 151
F (show first line) 173
I (insert) 174
L (show last line) 176
LC (lowercase) 177
M (move) 179
MASK 181
MD (make dataline) 183
notation conventions 152
O (overlay) 185
R (repeat) 187
rules for entering 151
S (show line) 62, 189
summary 152
TABS 191
TE (text entry) 65, 67, 192
TF (text flow) 65, 196
TS (text split) 65, 197
UC (uppercase) 199
usage 15
X (exclude) 57, 61, 201

line label
querying the value 348
setting the value 348

line number, ordinal 255
line pointer

COPY macro command 321
CREATE macro command 322
CURSOR assignment statement 323
DELETE macro command 331
incomplete 322
INSERT macro command 348
invalid 321, 365
LABEL assignment statement 348

line pointer (continued)
LINE_AFTER assignment

statement 352
LINE assignment statement 351
LINE_BEFORE assignment

statement 354
LOCATE macro command 358
MASKLINE assignment

statement 362
MODEL macro command 364
MOVE macro command 365
referring to labels 111
SHIFT (macro command 393
SHIFT) macro command 394
SHIFT > macro command 395
SHIFT < macro command 395
SUBMIT macro command 399
TABSLINE assignment statement 402
TENTER macro command 403
TFLOW macro command 404
TSPLIT macro command 405
XSTATUS assignment statement 410

line pointer range
CREATE macro command 322
DELETE macro command 331
LOCATE macro command 359
REPLACE macro command 382
RESET macro command 383
SUBMIT macro command 399

line range 64
LINE_STATUS 355
LINENUM, assignment statement 357
lines

adding 174
copying 168
deleting 171, 330
exclude status 410
excluded limitations 57
excluding 61, 242, 336
inserting 174
locating 255, 357
moving 179
numbering automatically 211
overlaying 185
query display 332
renumbering automatically 274, 380
repeating 187
show 189
show the first 173
showing the last 176
specifying ranges 63
splitting 66, 404

literal character string, defined 102
LOCATE

macro command
generic syntax 358
specific syntax 358

primary command
generic syntax 256
specific syntax 255

locate lines 255, 357
lock your profile 269, 375
locking an edit profile 21
logical record length, querying 359
logical tabs, description 68
lowercase operands 152, 205, 298

lptr
COPY macro command 321
CURSOR assignment statement 323
DELETE macro command 331
incomplete 322
INSERT macro command 348
invalid 321, 365
LABEL assignment statement 348
LINE_AFTER assignment

statement 352
LINE assignment statement 351
LINE_BEFORE assignment

statement 354
LOCATE macro command 358
MASKLINE assignment

statement 362
MODEL macro command 364
MOVE macro command 365
referring to labels 111
SHIFT (macro command 393
SHIFT) macro command 394
SHIFT > macro command 395
SHIFT < macro command 395
TABSLINE assignment statement 402
TENTER macro command 403
TFLOW macro command 404
TSPLIT macro command 405
XSTATUS assignment statement 410

lptr-range
CREATE macro command 322
DELETE macro command 331
LOCATE macro command 359
REPLACE macro command 382
RESET macro command 383
SUBMIT macro command 399

LRECL, assignment statement 359

M
M (move), line command

description 179
used with CREATE command 228
used with REPLACE command 277

macro
ending in batch 363
specifying a recovery 282, 385
specifying an initial 253, 347

MACRO, macro command 360
Macro Command Profile Reset

Syntax 376
macro commands

abbreviations 415
assignment statements 102
AUTOLIST 306
AUTONUM 307
AUTOSAVE 308
BOUNDS 310
BROWSE 312
BUILTIN 312
CANCEL 313
CAPS 314
CHANGE 315
COPY 321
CREATE 322
DEFINE 329
DELETE 330
disabling 232, 329

Index 427

macro commands (continued)
DOWN 333
EDIT 334
END 335
EXCLUDE 336
FIND 338
FLIP 341
HEX 342
HILITE 344
identifying 232, 329
IMACRO 347
INSERT 348
introduction to 87
ISRCUT 417
ISRONLY 417
ISRPASTE 417
labels 63
LEFT 349
LEVEL 350
LOCATE 357
MACRO 360
MEND 363
MODEL 363
MOVE 365
NONUMBER 366
notation conventions 297
NOTES 366
NULLS 367
NUMBER 368
PACK 371
PROCESS 374
PROFILE 375
RCHANGE 272, 378
RECOVERY 379
reference section 297
RENUM 380
REPLACE 382
RESET 382
RFIND 282, 384
RIGHT 385
RMACRO 115, 385
SAVE 386
SCAN 388
SEEK 51, 389
SETUNDO 392
SHIFT (393
SHIFT) 394
SHIFT > 395
SHIFT < 395
SORT 396
STATS 398
SUBMIT 399
summary 298
TABS 399
TENTER 65, 402
TFLOW 65, 404
TSPLIT 65, 404
UNNUMBER 405
UP 406
usage 17
VERSION 408
VIEW 409

Macro Commands
CUT 325
PASTE 372

macro definitions, resetting 113

MACRO_LEVEL, assignment
statement 111, 361

macro nesting level
querying 361
retrieving 109

managing data 47
mask, defined 181
MASK, line command 181
mask line, set or query 362
MASKLINE, assignment statement

description 362
overlays 104
using 104

MD (make dataline), line command 183
MEMBER, assignment statement 363
member, editing 235, 334
member name, querying 363
MEND, macro command 363
messages, displayed from edit

macros 90, 109
mixed data, used with data strings 96
Mixed Mode field 9
model

adding 79
changing 79, 83
class, defined 75
copying into the current data set 257,

363
deleting 79, 83
edit, defined 75
finding 79, 82
hierarchy 75
kinds 75
locating 82
logical name 75
macro command 363
name, defined 76
primary command 257
qualifier, defined 76
using 77

model notes, displaying 264, 366
model selection panels 77
modes, edit 21, 22
modification flag 255
modification level, description 29
modification level number,

specifying 254, 350
modifying an edit profile 21
MOUNT authority 8
MOVE

macro command 365
primary command 48, 260

move a data set member 260, 365
moving a line of data in an edit

macro 106
moving data into the current data set 48
moving lines 179
multiple parameters in an edit

macro 108

N
name, defining 232, 329
naming edit macros 101
nested macros, starting 109
nesting level, querying 361

NOCONLIST operand, CLIST CONTROL
statement 121

NOLIST operand, CLIST CONTROL
statement 121

non-destructive shifting, defined 50
NONUMBER

macro command 366
primary command 264

NOPROCESS 114
normal, defined for stats mode 28
NOSYMLIST operand, CLIST CONTROL

statement 121
notation conventions

line commands 152
macro commands 297
primary commands 205

note lines, converting to data 183
note mode

description of 22
querying the value 366
setting the value 264, 366

NOTES
assignment statement 366
macro command 366
primary command 22, 264

notes, displaying model 264, 366
null spaces, controlling 265, 367
NULLS

assignment statement 367
macro command 367
primary command 22, 265

nulls mode
description of 22
querying the value 367
setting the value 265, 367

NUMBER
assignment statement 368
macro command 368
primary command

description 22, 266
DISPLAY operand 30

number, specifying the modification
level 254, 350

number mode
defined 22
description 22, 266
initializing 31
setting, edit 29
turning off 264, 366
used with RENUM command 274,

380
numbering lines automatically 211, 307
numbers

controlling version 294, 408
generating sequence 266, 368
modification level 29
remove sequence 292, 405
sequence 29
turning off number mode 264, 366

O
O (overlay), line command 185
O operand, REXX TRACE statement 121
operand notation

lowercase 152, 205, 298
OR symbol (|) 205, 298

428 z/OS V1R2.0 ISPF Edit and Edit Macros

operand notation (continued)
stacked 152, 205, 298
underscored defaults 152, 205, 298

ordinal line number 255
overlaying lines 185
overlays, guidelines on how to

perform 104
overriding, built-in edit commands 113

P
PACK

assignment statement 371
macro command 371
primary command 22, 267

pack mode 22, 267
packing data, edit 17
panel

excluding lines 201
process the 374
resetting the 382
set up for text entry 402

panel data, resetting 280
panel values, saving and restoring 407
panels

Edit data display 10
Edit Entry 6, 237
edit profile display 20, 271
Edit Recovery 44
model selection 77

parameters in an edit macro 107
passing labels 112
passing parameters to an edit macro

description 107
multiple 108
processing an Edit command 96
program macros 96

password protection 8
Paste Lines 267, 372
Paste Macro command 372
Paste Primary command 267
PDF, defined 3
PF key processing in edit 16
PF keys, scroll commands 14
picture string 52, 53
power typing, defined 67
prepare display for data insertion 348
Preserve command 269
PRESERVE command 15
PRESERVE macro 373
primary commands

abbreviations 415
AUTOLIST 21, 209
AUTONUM 21, 211
AUTOSAVE 21, 213
BOUNDS 214
BROWSE 216
BUILTIN 215
CANCEL 216
CAPS 21, 217
CHANGE 51, 218
COPY 48, 223
CREATE 47, 227
DEFINE 232
DELETE 234
displaying after processing 16
EDIT 235

primary commands (continued)
END 241
EXCLUDE 51, 242
FIND 51, 243
FLIP 62, 245
HEX 22, 247
HILITE 250
IMACRO 22, 253
LEVEL 254
LOCATE 255
MODEL 257
MOVE 48, 260
NONUMBER 264
notation conventions 205
NOTES 22, 264
NULLS 22, 265
NUMBER 22, 266
PACK 22, 267
PROFILE 21, 269
RECOVERY 22, 273
reference section 205
RENUM 274
REPLACE 47, 276
RESET 63, 280
RMACRO 282
SAVE 282
SETUNDO 22, 283
SORT 285
STATS 22, 287
SUBMIT 287
summary 205
TABS 22, 288
UNDO 290
UNNUMBER 292
usage 16
VERSION 294
VIEW 295

Primary Commands
CUT 231
PASTE 267

PROCESS, macro command
description 374
used with RANGE_CMD assignment

statement 377
PROCESS command and operand 114
processing built-in commands 215, 312
PROFILE

assignment statement 375
macro command

description 375
profile control syntax 375
profile lock syntax 376

primary command
description 21, 271
display or define a profile 19
profile control syntax 270
profile lock syntax 270

profile, edit
autolist mode 209, 363
autonum mode 211, 307
autosave mode 213, 308
boundaries 214
boundary settings 166
caps mode 217
control and display 269, 375
defining 19
description 19

profile, edit (continued)
displaying 19
initial macro 253, 347
lock 269, 375
locking 21
modifying 21
note mode 264
nulls mode 265
recovery macro 282
saving and restoring 407
tabs mode 288
types 19

profile defaults 23, 24
PROFILE RESET command 24
Profile Reset Syntax 270
Profile Reset Syntax, Macro

Command 376
program macros

defined 95
differences from CLISTs 96
differences from REXX EXECs 96
how to write 97
implicit definition 114
passing parameters 96
running 100

Q
qualifying the search string 56
query

a line 351
autolist mode 306
autonum mode 307
autosave mode 308
block size 309
caps mode 314
change count 317
command entered 377
current member name 363
cursor position 322
data-changed status 326
data ID 327
data set name 328
data width 326
display columns 331
display lines 332
edit boundaries 310
edit profile 375
exclude counts 338
exclude status for a line 410
find counts 340
flow counts 342
hexadecimal mode 342
initial macro 347
line label 348
line number 357
logical record length 359
macro nesting level 361
mask line 362
modification level number 350
note mode 366
nulls mode 367
number mode 368
pack mode 371
record format 378
recovery mode 379
seek counts 391

Index 429

query (continued)
tabs line 401
tabs mode 399
version number 408

Query Source and Change Information
for a Line in a Data Set,
LINE_STATUS 355

Query Volume Information 409

R
R (repeat) line command 187
R operand, REXX TRACE statement 121
range

specifying 114
using labels to specify 64

RANGE_CMD, assignment statement
description 115, 377
used with the PROCESS

command 377
RC variable 117
RCHANGE, macro command

description 272, 378
used to repeat CHANGE

command 58
RECFM, assignment statement 378
record format, query 378
recovery

controlling edit 273, 379
edit 44
macro 115, 282, 385
mode 22, 273, 379

RECOVERY
assignment statement 379
macro command 379
primary command 22, 273

recursive editing, defined 235, 334
redisplaying excluded lines 62
referring to column positions 112
referring to data lines 112
reformatting a paragraph 196
relative line number of cursor, setting or

retrieving 322
relative line numbers 112
remove sequence numbers 292, 405
removing lines 234, 330
RENUM

macro command 380
primary command 274

RENUMBER primary command,
DISPLAY operand 30

renumbering lines automatically 274,
380

repeating a change 272, 378
repeating a search

RCHANGE command, Edit 58
RFIND command, Edit 58

repeating lines 187
REPLACE

macro command 382
primary command

description 276, 277
how to use 47

replace a data set member 382
replacing

data 47, 276
lines 106

RESET
macro command 382
primary command 280

RESET command, PROFILE 24
reset the data display 382
reset the data panel 280
resetting macro definitions 113
resetting the Line Command field 52
retrieving the change count 317
retrieving the data-changed status 326
retrieving the data ID 327
retrieving the data set name 328
retrieving the data width 326
return codes

&LASTCC variable 117
0 to 20 116
above 20 116
ISPF editor 117
RC variable 117

reverse last data change 290
REXX edit macro statements 87, 93
REXX SAY statements, using to debug

edit macros 120
REXX TRACE statements, using to debug

edit macros 121
RFIND command

description 282, 384
used to repeat FIND and EXCLUDE

commands 58
RIGHT

macro command 385
scroll 385

RMACRO
assignment statement

description 385
overview 116

macro command 385
primary command

description 282
overview 116

S
S (show line), line command

description 189
redisplaying excluded lines 62

S operand, REXX TRACE statement 121
sample edit macros 125
SAVE

macro command 386
primary command 282

save data automatically 213, 308
SAVE_LENGTH command 387
save the current data 282, 386
saving and restoring

CHANGE macro command
values 407

cursor and panel values 407
edit profile 407
FIND macro command values 407

SCAN
assignment statement 388
macro command 388

SCAN assignment statement 102
scope of macro definitions 113
scroll

down 333

scroll (continued)
left 349
right 385
up 406
using PF keys 14

search
controlling 55
DBCS search string, delimiting 52
extent 55
qualifying 56
starting point and direction 55

search strings
character 52
delimited 52
finding 338
hexadecimal 52
picture 52
simple 52

security, data set 8
SEEK, macro command

description 51, 389, 390
when to use instead of FIND 339

seek a data string 389
SEEK_COUNTS, assignment

statement 391
seek counts, query 391
sequence numbers

display 30
format 30
generating 266, 368
initializing 31
setting, edit 29

set
a line 351
autolist mode 306
autonum mode 307
autosave mode 308
caps mode 314
command scan mode 388
cursor position 322
edit boundaries 214, 310
edit profile 375
exclude status for a line 410
hexadecimal mode 247, 342
initial macro 347
line label 348
mask 181
mask line 362
modification level number 350
note mode 264, 366
nulls mode 265, 367
number mode 368
pack mode 371
recovery mode 379
tabs line 401
tabs mode 288, 399
version number 408

set UNDO command 283
setting the edit boundaries 214, 310
SETUNDO

macro command 392
primary command 71, 283

SHIFT (, macro command 393
SHIFT), macro command 394
SHIFT >, macro command 395
SHIFT <, macro command 395

430 z/OS V1R2.0 ISPF Edit and Edit Macros

shift columns
left 393
right 394

shift data
left 395
right 395

shifting data
edit

columns 49
explicit 49
implicit 49

non-destructive 50
show lines 189
show the first line 173
show the last line 176
SI characters, delimiting a search 52
simple editing 13
simple string 52
Site-wide Edit Profile Initialization 23
site-wide macro 17
SO characters, delimiting a search 52
software tab field, defined 192
software tabs

defining 69
description 68
fields, how to use 192

SORT
macro command

DBCS data 397
description 396, 397
limiting 397
without operands 397

primary command
DBCS data 286
description 285, 286
limiting 286
without operands 286

sorting data 285, 396
source listing, create 209, 306
spaces, controlling null 265, 367
special lines 25
specify a recovery macro 115, 282, 385
specifying

an initial macro 17, 27, 253, 347
the level number 254, 350

split screen limitations 57
splitting a line of text 197
splitting lines 66
splitting text 65
stacked operands 152, 205, 298
standard sequence field, defined 30
starting point of a search 55
statistics

creation and maintenance of 28
generating for a data set 287, 398

STATS
assignment statement 398
macro command 398
primary command 22, 287

stats mode 22, 28
strings, kinds of search

character 52
delimited 52
hexadecimal 52
picture 52
simple 52

SUBMIT
macro command 399
primary command 287

submit data for batch processing 287,
399

SYMLIST operand, CLIST CONTROL
statement 121

Syntax, Macro Command Profile
Reset 376

Syntax, Profile Reset 270

T
TABS

assignment statement 399
controlling and querying 69, 399
line command

defining hardware tabs 69
defining software tabs 69
description 191
limiting hardware tab columns 70
using software tab fields 192

macro command 399
primary command 22, 288

tabs line
querying the value 401
setting the value 401

tabs mode
description 22, 69
setting the value 288, 399

TABSLINE, assignment statement 401
TE (text entry), line command

DBCS data, using a DBCS
terminal 68

description 67, 192, 193
example 193
syntax 193

template (overlay)
definition 104
how to design 104

TENTER, macro command 402
text entry

in word processing 65
line command 192
setting up the panel 402

text flow 65
text flowing a paragraph 196, 404
text split a line 404
TF (text flow), line command

DBCS data, using a DBCS
terminal 66

description 65, 196
TFLOW, macro command 404
TS (text split), line command

DBCS data 67
description 197, 198

TSO commands in edit macros 95
TSPLIT, macro command 404
turn off number mode 264, 366

U
UC (uppercase), line command 199
underscored operands 152, 205, 298
undisplayable characters 13

UNDO
primary command 290
SETUNDO requirement 392
with SETUNDO macro 283

undoing edit interactions
description 290
how to use 71
UNDO primary command 290

UNDOSIZE 72
UNNUMBER

macro command 405
primary command 292

UP, macro command 406
uppercase, converting data to 199
uppercase commands and operands 152,

205, 297
USER_STATE, assignment statement 407
using the ISPF editor 3

V
value portion of an edit macro

statement 102
variable substitution, controlling 102
variables in edit macros 101
verifying parameters 114
VERSION

assignment statement 408
macro command 408
primary command 294

version number
controlling 294, 408
description 29

VIEW
macro command 409
primary command 295

VOLUME assignment statement 409
Volume Information 409

W
writing program macros 95, 97

X
X (exclude), line command

using 57, 61
XSTATUS, assignment statement 410

Z
ZDEFAULT edit profile 24
ZEDITCMD variable 108
ZEDLMSG 109
ZEDSAVE variable 326
ZEDSMSG 109
ZUSERMAC variable 28

Index 431

432 z/OS V1R2.0 ISPF Edit and Edit Macros

Readers’ Comments — We’d Like to Hear from You

Interactive
System Productivity Facility (ISPF)
Edit and Edit Macros
z/OS Version 1 Release 2.0

Publication No. SC34-4820-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC34-4820-01

SC34-4820-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA / Bldg 503
Research Triangle Park, NC
27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

File Number: S370/4300-39
Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-4820-01

	Contents
	Figures
	Preface
	About This Book
	Who Should Use This Book

	Summary of Changes
	ISPF Product Changes
	ISPF DM Component Changes
	ISPF PDF Component Changes
	ISPF SCLM Component Changes
	ISPF Client/Server Component Changes
	ISPF User Interface Considerations
	ISPF Migration Considerations
	ISPF Profiles
	Year 2000 Support for ISPF

	Elements and Features in z/OS
	The ISPF User Interface
	Some Terms You Should Know
	How to Navigate in ISPF without Using Action Bars
	How to Navigate in ISPF Using the Action Bar Interface
	Action Bars
	Action Bar Choices
	Menu Action Bar Choice
	Utilities Action Bar Choice

	Point-and-Shoot Text Fields
	Function Keys
	Selection Fields

	Command Nesting

	Part 1. The ISPF Editor
	Chapter 1. Introducing the ISPF Editor
	What is ISPF?
	What the ISPF Editor Does
	How to Use the ISPF Editor
	Beginning an Edit Session
	Edit Entry Panel Action Bar
	Edit Entry Panel Fields
	Creating a New Data Set
	Editing an Existing Data Set

	Using the ISPF Editor Basic Functions
	Ending an Edit Session

	Edit Commands
	Line Commands
	Primary Commands
	Edit Commands and PF Key Processing

	Edit Macros
	Editing Data in Controlled Libraries
	Packing Data

	Chapter 2. Controlling the Edit Environment
	What is an Edit Profile?
	Using Edit Profile Types
	Displaying or Defining an Edit Profile
	Modifying an Edit Profile
	Locking an Edit Profile

	Edit Modes
	Edit Profile Modes
	Edit Mode Defaults
	Site-wide Edit Profile Initialization
	Creating a ZDEFAULT Edit Profile

	Flagged Lines
	Changed Lines
	Error Lines
	Special Lines

	Edit Boundaries
	Initial Macros
	Application-Wide Macros
	Statistics for PDS Members
	Effect of Stats Mode When Beginning an Edit Session
	Effect of Stats Mode When Saving Data

	Version and Modification Level Numbers
	Sequence Numbers
	Sequence Number Format and Modification Level
	Sequence Number Display
	Initialization of Number Mode

	Enhanced and Language-sensitive Edit Coloring
	Language Support
	Automatic Language Selection
	Language Processing Limitations and Idiosyncracies

	The HILITE Command/Dialog
	HILITE Operands
	The HILITE Dialog

	Highlighting Status and the Edit Profile

	Edit Recovery

	Chapter 3. Managing Data
	Creating and Replacing Data
	Copying and Moving Data
	Shifting Data
	Column Shift
	Column Shifting in Lines that Contain DBCS Strings

	Data Shift

	Finding, Seeking, Changing, and Excluding Data
	Specifying the Search String
	Simple and Delimited Strings
	Character Strings
	Picture Strings (String-1)
	Picture Strings (String-2)

	Effect of CHANGE Command on Column-Dependent Data
	Using the CHANGE Command With EBCDIC and DBCS Data
	Controlling the Search
	Extent of the Search
	Starting Point and Direction of the Search

	Qualifying the Search String
	Column Limitations
	Split Screen Limitations
	Excluded Line Limitations
	Using the X (Exclude) Line Command with FIND and CHANGE
	Repeating the FIND, CHANGE, and EXCLUDE Commands
	Examples
	FIND Command Example
	CHANGE Command Example
	EXCLUDE Command Example

	Excluding Lines
	Redisplaying Excluded Lines
	Redisplaying a Range of Lines

	Labels and Line Ranges
	Editor-Assigned Labels
	Specifying a Range
	Using Labels and Line Ranges

	Word Processing
	Formatting Paragraphs
	Using Text Flow on a DBCS Terminal

	Splitting Lines
	Splitting Lines Within a DBCS String

	Entering Text (Power Typing)
	Entering Text on a DBCS Terminal

	Using Tabs
	Types of Tabs
	Software and Hardware Tabs
	Logical Tabs
	Effect of TABS Commands on Tab Types

	Defining and Controlling Tabs
	Defining Software Tab Positions
	Defining Hardware Tab Positions
	Limiting the Size of Hardware Tab Columns

	Using Attribute Bytes

	Undoing Edit Interactions
	UNDO Processing
	Understanding Differences in SETUNDO Processing

	Chapter 4. Using Edit Models
	What Is an Edit Model?
	How Models Are Organized
	How to Use Edit Models
	Adding, Finding, Changing, and Deleting Models
	Adding Models
	Finding Models
	Changing Models
	Deleting Models

	Part 2. Edit Macros
	Chapter 5. Using Edit Macros
	What Are Edit Macros?
	Performing Repeated Tasks
	Simplifying Complex Tasks
	Passing Parameters, and Retrieving and Returning Information

	Chapter 6. Creating Edit Macros
	CLIST and REXX Edit Macros
	Edit Macro Commands and Assignment Statements
	Using the REXX ADDRESS Instruction

	Command Procedure Statements
	ISPF and PDF Dialog Service Requests
	TSO Commands

	Program Macros
	Differences between Program Macros, CLISTs, and REXX EXECs
	Passing Parameters in a Program Macro
	Program Macro Examples
	Writing Program Macros
	Running Program Macros

	Using Commands in Edit Macros
	Naming Edit Macros
	Variables
	Variable Substitution
	Character Conversion

	Edit Assignment Statements
	Value
	Keyphrase
	Overlays and Templates
	Using Edit Assignment Statements
	Passing Values
	Manipulating Data With Edit Assignment Statements
	Differences Between Edit, CLIST, and REXX Assignment Statements

	Performing Line Command Functions
	Parameters
	Passing Parameters to a Macro
	Using Edit macros in Batch
	Edit Macro Messages
	Macro Levels
	Labels in Edit Macros
	Using Labels
	Referring to Labels
	Passing Labels

	Referring to Data Lines
	Referring to Column Positions
	Defining Macros
	Defining an Alias
	Resetting Definitions
	Replacing Built-In Commands
	Implicit Definitions

	Using the PROCESS Command and Operand
	Specifying NOPROCESS in the Macro Statement
	Specifying a Destination
	Specifying a Range
	Example

	Recovery Macros

	Return Codes from User-Written Edit Macros
	Return Codes from PDF Edit Macro Commands
	Selecting Control for Errors

	Chapter 7. Testing Edit Macros
	Handling Errors
	Edit Command Errors
	Dialog Service Errors

	Using CLIST WRITE Statements and REXX SAY Statements
	Using CLIST CONTROL and REXX TRACE Statements
	Experimenting with Macro Commands
	Debugging Edit Macros with ISREMSPY

	Chapter 8. Sample Edit Macros
	TEXT Macro
	PFCAN Macro
	BOX Macro
	IMBED Macro
	ALLMBRS Macro
	FINDCHGS Macro
	MASKDATA Macro

	Part 3. Command Reference
	Chapter 9. Edit Line Commands
	Rules for Entering Line Commands
	Edit Line Command Notation Conventions
	Line Command Summary
	(—Column Shift Left
	Syntax
	Description
	Example

)—Column Shift Right
	Syntax
	Description
	Example

	<—Data Shift Left
	Syntax
	Description
	Example

	>—Data Shift Right
	Syntax
	Description
	Example

	A—Specify an “After” Destination
	Syntax
	Description
	Example

	B—Specify a “Before” Destination
	Syntax
	Description
	Example

	BOUNDS—Define Boundary Columns
	Syntax
	Description
	Example

	C—Copy Lines
	Syntax
	Description
	Example

	COLS—Identify Columns
	Syntax
	Description
	Example

	D—Delete Lines
	Syntax
	Description
	Example

	F—Show the First Line
	Syntax
	Description
	Example

	I—Insert Lines
	Syntax
	Description
	Example

	L—Show the Last Line(s)
	Syntax
	Description
	Example

	LC—Convert Characters to Lowercase
	Syntax
	Description
	Example

	M—Move Lines
	Syntax
	Description
	Example

	MASK—Define Masks
	Syntax
	Description
	Example

	MD—Make Dataline
	Syntax
	Description
	Example

	O—Overlay Lines
	Syntax
	Description
	Example

	R—Repeat Lines
	Syntax
	Description
	Example

	S—Show Lines
	Syntax
	Description
	Example

	TABS—Control Tabs
	Syntax
	Description
	Examples
	Using Software and Hardware Tabs
	Using Software Tab Fields

	TE—Text Entry
	Syntax
	Description
	Example

	TF—Text Flow
	Syntax
	Description
	Example

	TS—Text Split
	Syntax
	Description
	Examples

	UC—Convert Characters to Uppercase
	Syntax
	Description
	Example

	X—Exclude Lines
	Syntax
	Description
	Example

	Chapter 10. Edit Primary Commands
	Edit Primary Command Notation Conventions
	Edit Primary Command Summary
	AUTOLIST—Create a Source Listing Automatically
	Syntax
	Description
	Example

	AUTONUM—Number Lines Automatically
	Syntax
	Description
	Example

	AUTOSAVE—Save Data Automatically
	Syntax
	Description
	Example

	BOUNDS—Control the Edit Boundaries
	Syntax
	Description
	Examples

	BUILTIN—Process a Built-In Command
	Syntax
	Description
	Example

	BROWSE—Browse from within an Edit Session
	Syntax
	Description
	Example

	CANCEL—Cancel Edit Changes
	Syntax
	Description
	Example

	CAPS—Control Automatic Character Conversion
	Syntax
	Description
	Example

	CHANGE—Change a Data String
	Syntax
	Description
	Examples

	COMPARE—Edit Compare
	Command Syntax
	Examples

	COPY—Copy Data
	Syntax
	Description
	Example

	CREATE—Create Data
	Syntax
	Description
	Example

	CUT—Cut and Save Lines
	Syntax
	Description
	Example

	DEFINE—Define a Name
	Syntax
	Description
	Stacking DEFINE Commands

	Examples

	DELETE—Delete Lines
	Syntax
	Description
	Examples

	EDIT—Edit from within an Edit Session
	Syntax
	Description
	Example

	EDITSET—Display the Editor Settings Dialog
	Syntax
	Description
	The Edit and View Settings Panel
	Example

	END—End the Edit Session
	Syntax
	Description
	Example

	EXCLUDE—Exclude Lines from the Display
	Syntax
	Description
	Examples

	FIND—Find a Data String
	Syntax
	Description
	Examples

	FLIP—Reverse Exclude Status of Lines
	Syntax
	Description
	Example

	HEX—Display Hexadecimal Characters
	Syntax
	Description
	Examples

	HILITE—Enhanced Edit Coloring
	Syntax
	Description

	IMACRO—Specify an Initial Macro
	Syntax
	Examples

	LEVEL—Specify the Modification Level Number
	Syntax
	Description
	Example

	LOCATE—Locate a Line
	Specific Locate Syntax
	Generic Locate Syntax
	Examples

	MODEL—Copy a Model into the Current Data Set
	Model Name Syntax
	Class Name Syntax
	Example

	MOVE—Move Data
	Syntax
	Description
	Example

	NONUMBER—Turn Off Number Mode
	Syntax
	Description
	Example

	NOTES—Display Model Notes
	Syntax
	Description
	Examples

	NULLS—Control Null Spaces
	Syntax
	Description
	Examples

	NUMBER—Generate Sequence Numbers
	Syntax
	Description
	Examples

	PACK—Compress Data
	Syntax
	Examples

	PASTE—Move or Copy Lines from Clipboard
	Syntax
	Description
	Example

	PRESERVE - Enable Saving of Trailing Blanks
	Syntax
	Description
	Examples

	PROFILE—Control and Display Your Profile
	Profile Control Syntax
	Profile Lock Syntax
	Profile Reset Syntax
	Description
	Example

	RCHANGE—Repeat a Change
	Syntax
	Description

	RECOVERY—Control Edit Recovery
	Syntax
	Description

	RENUM—Renumber Data Set Lines
	Syntax
	Description
	Example

	REPLACE—Replace Data
	Syntax
	Description
	Example

	RESET—Reset the Data Display
	Syntax
	Description
	Examples

	RFIND—Repeat Find
	Syntax

	RMACRO—Specify a Recovery Macro
	Syntax
	Description
	Example

	SAVE—Save the Current Data
	Syntax
	Description
	Example

	SETUNDO—Set the UNDO Mode
	Syntax
	Description
	Example

	SORT—Sort Data
	Syntax
	Description
	Sorting Data Without Operands
	Limiting the SORT Command
	Sorting DBCS Data

	Examples

	STATS—Generate Library Statistics
	Syntax
	Examples

	SUBMIT—Submit Data for Batch Processing
	Syntax
	Description
	Examples

	TABS—Define Tabs
	Syntax
	Example

	UNDO—Reverse Last Edit Interaction
	Syntax
	Description
	Example

	UNNUMBER—Remove Sequence Numbers
	Syntax
	Description
	Example

	VERSION—Control the Version Number
	Syntax
	Description
	Example

	VIEW—View from within an Edit Session
	Syntax
	Description
	Example

	Chapter 11. Edit Macro Commands and Assignment Statements
	Edit Macro Command Notation Conventions
	Edit Macro Command Summary
	AUTOLIST—Set or Query Autolist Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Return Codes
	Examples

	AUTONUM—Set or Query Autonum Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	AUTOSAVE—Set or Query Autosave Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	BLKSIZE—Query the Block Size
	Assignment Statement Syntax
	Return Codes
	Example

	BOUNDS—Set or Query the Edit Boundaries
	Macro Command Syntax
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	BROWSE—Browse from within an Edit Session
	Macro Command Syntax
	Description
	Return Codes
	Examples

	BUILTIN—Process a Built-In Command
	Macro Command Syntax
	Description
	Return Codes
	Examples

	CANCEL—Cancel Edit Changes
	Macro Command Syntax
	Description
	Return Codes
	Example

	CAPS—Set or Query Caps Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	CHANGE—Change a Search String
	Macro Command Syntax
	Description
	Return Codes
	Example

	CHANGE_COUNTS—Query Change Counts
	Assignment Statement Syntax
	Return Codes
	Examples

	COMPARE—Edit Compare
	Macro Command Syntax
	Return Codes
	Compare Examples

	COPY—Copy Data
	Macro Command Syntax
	Return Codes
	Examples

	CREATE—Create a Data Set or a Data Set Member
	Macro Command Syntax
	Description
	Return Codes
	Example

	CURSOR—Set or Query the Cursor Position
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	CUT—Cut and Save Lines
	Syntax
	Description
	Return Codes
	Examples

	DATA_CHANGED—Query the Data Changed Status
	Assignment Statement Syntax
	Description
	Return Codes
	Example

	DATA_WIDTH—Query Data Width
	Assignment Statement Syntax
	Description
	Return Codes
	Example

	DATAID—Query Data ID
	Assignment Statement Syntax
	Description
	Return Codes
	Example

	DATASET—Query the Current and Original Data Set Names
	Assignment Statement Syntax
	Return Codes
	Example

	DEFINE—Define a Name
	Macro Command Syntax
	Description
	Return Codes
	Examples

	DELETE—Delete Lines
	Macro Command Syntax
	Description
	Return Codes
	Examples

	DISPLAY_COLS—Query Display Columns
	Assignment Statement Syntax
	Description
	Return Codes
	Example

	DISPLAY_LINES—Query Display Lines
	Assignment Statement Syntax
	Return Codes
	Example

	DOWN—Scroll Down
	Macro Command Syntax
	Description
	Return Codes
	Examples

	EDIT—Edit from within an Edit Session
	Macro Command Syntax
	Description
	Return Codes
	Example

	END—End the Edit Session
	Macro Command Syntax
	Description
	Return Codes
	Example

	EXCLUDE—Exclude Lines from the Display
	Macro Command Syntax
	Description
	Return Codes
	Examples

	EXCLUDE_COUNTS—Query Exclude Counts
	Assignment Statement Syntax
	Return Codes
	Example

	FIND—Find a Search String
	Macro Command Syntax
	Description
	Return Codes
	Examples

	FIND_COUNTS—Query Find Counts
	Assignment Statement Syntax
	Return Codes
	Example

	FLIP—Reverse Exclude Status of Lines
	Assignment Statement Syntax
	Return Codes
	Examples

	FLOW_COUNTS—Query Flow Counts
	Assignment Statement Syntax
	Return Codes
	Example

	HEX—Set or Query Hexadecimal Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	HILITE—Enhanced Edit Coloring
	Macro Command Syntax
	Description
	Return Codes

	IMACRO—Set or Query an Initial Macro
	Macro Command Syntax
	Assignment Statement Syntax
	Return Codes
	Examples

	INSERT—Prepare Display for Data Insertion
	Macro Command Syntax
	Description
	Return Codes
	Example

	LABEL—Set or Query a Line Label
	Assignment Statement Syntax
	Description
	Return Codes
	Example

	LEFT—Scroll Left
	Macro Command Syntax
	Description
	Return Codes
	Example

	LEVEL—Set or Query the Modification Level Number
	Macro Command Syntax
	Assignment Statement Syntax
	Return Codes
	Examples

	LINE—Set or Query a Line from the Data Set
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	LINE_AFTER—Add a Line to the Current Data Set
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	LINE_BEFORE—Add a Line to the Current Data Set
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	LINE_STATUS—Query Source and Change Information for a Line in a Data Set
	Assignment Statement Syntax
	Return Codes
	Example

	LINENUM—Query the Line Number of a Labeled Line
	Assignment Statement Syntax
	Return Codes
	Description
	Examples

	LOCATE—Locate a Line
	Specific Locate Syntax
	Generic Locate Syntax
	Return Codes
	Examples

	LRECL—Query the Logical Record Length
	Assignment Statement Syntax
	Description
	Return Codes
	Example

	MACRO—Identify an Edit Macro
	Macro Command Syntax
	Description
	Return Codes
	Examples

	MACRO_LEVEL—Query the Macro Nesting Level
	Assignment Statement Syntax
	Description
	Return Codes
	Example

	MASKLINE—Set or Query the Mask Line
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	MEMBER—Query the Current Member Name
	Assignment Statement Syntax
	Return Codes
	Example

	MEND—End a Macro in the Batch Environment
	Macro Command Syntax
	Return Codes

	MODEL—Copy a Model into the Current Data Set
	Macro Command Model Name Syntax
	Macro Command Class Name Syntax
	Return Codes
	Example

	MOVE— Move a Data Set or a Data Set Member
	Macro Command Syntax
	Description
	Return Codes
	Examples

	NONUMBER—Turn Off Number Mode
	Syntax
	Description
	Return Codes
	Example

	NOTES—Set or Query Note Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Return Codes
	Examples

	NULLS—Set or Query Nulls Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	NUMBER—Set or Query Number Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Description
	Return Codes
	Example

	PACK—Set or Query Pack Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Return Codes
	Example

	PASTE—Move or Copy Lines from Clipboard
	Syntax
	Description
	Return Codes
	Examples

	PRESERVE—Enable Saving of Trailing Blanks
	Macro Command Syntax
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	PROCESS—Process Line Commands
	Macro Command Syntax
	Description
	Return Codes
	Examples

	PROFILE—Set or Query the Current Profile
	Macro Command Profile Control Syntax
	Macro Command Profile Lock Syntax
	Macro Command Profile Reset Syntax
	Assignment Statement Syntax
	Description
	Return Codes
	Example

	RANGE_CMD—Query a Command That You Entered
	Assignment Statement Syntax
	Description
	Return Codes
	Example

	RCHANGE—Repeat a Change
	Macro Command Syntax
	Description
	Return Codes
	Example

	RECFM—Query the Record Format
	Assignment Statement Syntax
	Return Codes
	Example

	RECOVERY—Set or Query Recovery Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Return Codes
	Examples

	RENUM—Renumber Data Set Lines
	Macro Command Syntax
	Return Codes
	Examples

	REPLACE—Replace a Data Set or Data Set Member
	Macro Command Syntax
	Return Codes
	Example

	RESET—Reset the Data Display
	Macro Command Syntax
	Description
	Return Codes
	Examples

	RFIND—Repeat Find
	Macro Command Syntax
	Return Codes
	Example

	RIGHT—Scroll Right
	Macro Command Syntax
	Description
	Return Codes
	Example

	RMACRO—Set or Query the Recovery Macro
	Macro Command Syntax
	Assignment Statement Syntax
	Return Codes
	Example

	SAVE—Save the Current Data
	Macro Command Syntax
	Description
	Return Codes
	Example

	SAVE_LENGTH—Set or Query Length for Variable Length Data
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	SCAN—Set Command Scan Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Return Codes
	Example

	SEEK—Seek a Data String, Positioning the Cursor
	Macro Command Syntax
	Description
	Return Codes
	Examples

	SEEK_COUNTS—Query Seek Counts
	Assignment Statement Syntax
	Return Codes
	Example

	SESSION—Query Session Type
	Assignment Statement Syntax
	Return Codes

	SETUNDO—Set UNDO Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	SHIFT (—Shift Columns Left
	Macro Command Syntax
	Description
	Return Codes
	Examples

	SHIFT)—Shift Columns Right
	Macro Command Syntax
	Description
	Return Codes
	Examples

	SHIFT <—Shift Data Left
	Macro Command Syntax
	Description
	Return Codes
	Examples

	SHIFT >—Shift Data Right
	Macro Command Syntax
	Description
	Return Codes
	Examples

	SORT—Sort Data
	Macro Command Syntax
	Description
	Sorting Data Without Operands
	Limiting the SORT Command
	Sorting DBCS Data

	Return Codes
	Examples

	STATS—Set or Query Stats Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Return Codes
	Examples

	SUBMIT—Submit Data for Batch Processing
	Macro Command Syntax
	Description
	Return Codes
	Examples

	TABS—Set or Query Tabs Mode
	Macro Command Syntax
	Assignment Statement Syntax
	Return Codes
	Examples

	TABSLINE—Set or Query Tabs Line
	Assignment Statement Syntax
	Return Codes
	Examples

	TENTER—Set Up Panel for Text Entry
	Macro Command Syntax
	Description
	Return Codes
	Example

	TFLOW—Text Flow a Paragraph
	Macro Command Syntax
	Return Codes
	Example

	TSPLIT—Text Split a Line
	Macro Command Syntax
	Description
	Return Codes
	Example

	UNNUMBER—Remove Sequence Numbers
	Macro Command Syntax
	Description
	Return Codes
	Example

	UP—Scroll Up
	Macro Command Syntax
	Description
	Return Codes
	Examples

	USER_STATE—Save or Restore User State
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	VERSION—Set or Query Version Number
	Macro Command Syntax
	Assignment Statement Syntax
	Return Codes
	Examples

	VIEW—View from within an Edit Session
	Macro Command Syntax
	Description
	Return Codes
	Examples

	VOLUME—Query Volume Information
	Assignment Statement Syntax
	Return Codes
	Examples

	XSTATUS—Set or Query Exclude Status of a Line
	Assignment Statement Syntax
	Description
	Return Codes
	Examples

	Part 4. Appendixes
	Appendix A. Abbreviations for Commands and Other Values
	Edit Line Commands
	Edit Primary Commands
	Parameters
	Keywords/Operands
	Scroll Amounts

	Appendix B. Edit-Related Sample Macros
	Sample Macros

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

